Book References

ChapterReference NumberContentURL
i1Adabag, A. S., Luepker, R. V., Roger, V. L. and Gersh, B. J. (2010). Sudden cardiac death: Epidemiology and risk factors. Nature Reviews Cardiology, 7(4), 216–25.www.ncbi.nlm.nih.gov/pmc/articles/PMC5014372
i2Katz, D. L. (2019). Plant-based diets for reversing disease and saving the planet: Past, present, and future. Advances in Nutrition, 10(Supplement_4), S304–7. academic.oup.com/advances/article/10/Supplement_4/S304/5624055
i3Mbow, C., Rosenzweig, C. et al. (2019). Food Security in Shukla, P. R. et al. (eds) Climate Change and Land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. IPCC, Geneva. www.ipcc.ch/site/assets/uploads/sites/4/2020/02/SRCCL-Chapter-5.pdf
i4Gerber, P.J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A. and Tempio, G. (2013). Tackling climate change through livestock – A global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome. www.fao.org/3/a-i3437e.pdf
i5Poore, J. and Nemecek, T. (2018). Reducing food’s environmental impacts through producers and consumers. Science, 360(6392), 987–92. science.sciencemag.org/content/360/6392/987
i6Livestock, Environment and Development (LEAD) Initiative and Food and Agriculture Organization of the United Nations (FAO). (2006). Livestock’s Long Shadow: Environmental issues and options. Food and Agriculture Organization of the United Nations (FAO), Rome. www.fao.org/3/a0701e/a0701e.pdf
i7Ripple, W. J. et al. and 15,364 scientist signatories from 184 countries. (2017). World scientists’ warning to humanity: A second notice. BioScience, 67(12), 1026–28. academic.oup.com/bioscience/article-abstract/67/12/1026/4605229
i82021 Australia Animal Kill Clock. Animal Clock.animalclock.org/au
i9Australian Institute of Health and Welfare. (2020). International health data comparisons, 2020: Life expectancy, mortality and causes of death. AIHW, Australian Government, Canberra. www.aihw.gov.au/reports/international-comparisons/international-health-data-comparisons-2018/contents/life-expectancy-mortality-and-causes-of-death
i10Australian Institute of Health and Welfare. (2020). Australia’s Health 2020: In brief. Australia’s Health Series no. 17, Cat. no. AUS 232. AIHW, Australian Government, Canberra. www.aihw.gov.au/getmedia/2aa9f51b-dbd6-4d56-8dd4-06a10ba7cae8/aihw-aus-232.pdf.aspx
i11Roser, M., Ortiz-Ospina, E. and Ritchie, H. (2019). Life expectancy. Our World in Data. ourworldindata.org/life-expectancy
i12World Health Organization. ‘Ageing well’ must be a global priority. WHO Media centre. 6 November 2014.www.who.int/mediacentre/news/releases/2014/lancet-ageing-series/en
i13Australian Institute of Health and Welfare. (2020). Chronic disease: Overview. AIHW, Australian Government, Canberra. www.aihw.gov.au/reports-data/health-conditions-disability-deaths/chronic-disease/overview
i14World Health Organization. Noncommunicable diseases. WHO Newsroom. 1 June 2018.www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases
i15Australian Bureau of Statistics. (2018). National Health Survey: First results. Australian Bureau of Statistics (ABS), Australian Government, Canberra. www.abs.gov.au/statistics/health/health-conditions-and-risks/national-health-survey-first-results/2017-18
i16Hong, Y. M. (2010). Atherosclerotic cardiovascular disease beginning in childhood. Korean Circulation Journal, 40(1), 1–9. www.ncbi.nlm.nih.gov/pmc/articles/PMC2812791
i17Napoli, C., D’Armiento, F. P., Mancini, F. P., Postiglione, A., Witztum, J. L., Palumbo, G. and Palinski, W. (1997). Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal hypercholesterolemia. Intimal accumulation of low density lipoprotein and its oxidation precede monocyte recruitment into early atherosclerotic lesions. Journal of Clinical Investigation, 100(11), 2680–90. www.jci.org/articles/view/119813
i18Dementia Australia. Number of people with dementia on the rise. Dementia Australia. 28 February 2018.www.dementia.org.au/media-releases/2018/Number-of-people-with-dementia-on-the-rise
i19Australian Institute of Health and Welfare. (2020). Chronic conditions and multimorbidity. AIHW, Australian Government, Canberra. www.aihw.gov.au/reports/australias-health/chronic-conditions-and-multimorbidity
i20Willett, W. C. (2002). Balancing life-style and genomics research for disease prevention. Science, 296(5568), 695–8. science.sciencemag.org/content/296/5568/695
i21Herskind, A. M., McGue, M., Holm, N. V., Sörensen, T. I., Harvald, B. and Vaupel, J. W. (1996). The heritability of human longevity: A population-based study of 2872 Danish twin pairs born 1870–1900. Human Genetics, 97(3), 319–23. link.springer.com/article/10.1007/BF02185763
i22Robertson, T. L. et al. (1977). Epidemiologic studies of coronary heart disease and stroke in Japanese men living in Japan, Hawaii and California. Incidence of myocardial infarction and death from coronary heart disease. American Journal of Cardiology, 39(2), 239–43. pubmed.ncbi.nlm.nih.gov/835482
i23Herskind, A. M., McGue, M., Holm, N. V., Sörensen, T. I., Harvald, B. and Vaupel, J. W. (1996). The heritability of human longevity: A population-based study of 2872 Danish twin pairs born 1870–1900. Human Genetics, 97(3), 319–23. link.springer.com/article/10.1007/BF02185763
i24Dernini, S. (2011). The erosion and the renaissance of the Mediterranean diet: A sustainable cultural resource. Quaderns de la Mediterrania, 16, 75–82. www.iemed.org/observatori/arees-danalisi/arxius-adjunts/qm-16-originals/derninisandro_erosion%20and%20the%20renaissance%20of%20Meddiet_qm16.pdf
i25Delicano, R. A. et al. (2020). The shared risk of diabetes between dog and cat owners and their pets: Register based cohort study. BMJ, 371, m4337. www.bmj.com/content/371/bmj.m4337
i26Fernandes, J. C. and GBD 2015 Obesity Collaborators. (2017). Health effects of overweight and obesity in 195 countries over 25 years. New England Journal of Medicine, 77(1), 13–27. www.nejm.org/doi/full/10.1056/NEJMoa1614362
i27Zheng, Y. et al. (2017). Associations of weight gain from early to middle adulthood with major health outcomes later in life. JAMA, 318(3), 255–69. jamanetwork.com/journals/jama/article-abstract/2643761
i28Kramer, C. K., Zinman, B. and Retnakaran, R. (2013). Are metabolically healthy overweight and obesity benign conditions? A systematic review and meta-analysis. Annals of Internal Medicine, 159(11), 758–69. www.acpjournals.org/doi/abs/10.7326/0003-4819-159-11-201312030-00008
i29Abdullah, A., Peeters, A., de Courten, M. and Stoelwinder, J. (2010). The magnitude of association between overweight and obesity and the risk of diabetes: A meta-analysis of prospective cohort studies. Diabetes Research and Clinical Practice, 89(3), 309–19. pubmed.ncbi.nlm.nih.gov/20493574
i30Aune, D., Norat, T. and Vatten, L. J. (2015). Body mass index, abdominal fatness and the risk of gallbladder disease. European Journal of Epidemiology, 30(9), 1009–19. pubmed.ncbi.nlm.nih.gov/26374741
i31Aune, D. et al. (2015). Anthropometric factors and endometrial cancer risk: A systematic review and dose-response meta-analysis of prospective studies. Annals of Oncology, 26(8), 1635–48. www.annalsofoncology.org/article/S0923-7534(19)31836-8
i32Field, A. E., Coakley, E. H., Must, A., Spadano, J. L., Laird, N., Dietz, W. H., Rimm, E. and Colditz, G. A. (2001). Impact of overweight on the risk of developing common chronic diseases during a 10-year period. Archives of Internal Medicine, 161(13), 1581–pubmed.ncbi.nlm.nih.gov/11434789
i33Anstey, K. J., Cherbuin, N., Budge, M. and Young, J. (2011). Body mass index in midlife and late‐life as a risk factor for dementia: A meta‐analysis of prospective studies. Obesity Reviews, 12(5), e426–37. onlinelibrary.wiley.com/doi/full/10.1111/j.1467-789X.2010.00825
i34Li, L., Gan, Y., Li, W., Wu, C. and Lu, Z. (2016). Overweight, obesity and the risk of gallbladder and extrahepatic bile duct cancers: A meta‐analysis of observational studies. Obesity, 24(8), 1786–1802. onlinelibrary.wiley.com/doi/abs/10.1002/oby.21505
i35Munsell, M. F., Sprague, B. L., Berry, D. A., Chisholm, G. and Trentham-Dietz, A. (2014). Body mass index and breast cancer risk according to postmenopausal estrogen-progestin use and hormone receptor status. Epidemiologic Reviews, 36(1), 114–36. academic.oup.com/epirev/article-abstract/36/1/114/566646
i36Ma, Y., Yang, Y., Wang, F., Zhang, P., Shi, C., Zou, Y. and Qin, H. (2013). Obesity and risk of colorectal cancer: A systematic review of prospective studies. PLOS One, 8(1), e53916. journals.plos.org/plosone/article?id=10.1371/journal.pone.0053916
i37Aune, D. et al. (2016). BMI and all cause mortality: Systematic review and non-linear dose-response meta-analysis of 230 cohort studies with 3.74 million deaths among 30.3 million participants. BMJ, 353, i2156. www.bmj.com/content/353/bmj.i2156
i38Sedlmeier, A. M. et al. (2021). Relation of body fat mass and fat-free mass to total mortality: Results from 7 prospective cohort studies. American Journal of Clinical Nutrition. academic.oup.com/ajcn/advance-article-abstract/doi/10.1093/ajcn/nqaa339/6092216
i39Adams, K. F. et al. (2006). Overweight, obesity, and mortality in a large prospective cohort of persons 50 to 71 years old. New England Journal of Medicine, 355(8), 763–78. pubmed.ncbi.nlm.nih.gov/16926275
i40Di Angelantonio, E. et al. (2016). Body-mass index and all-cause mortality: Individual-participant-data meta-analysis of 239 prospective studies in four continents. The Lancet, 388(10046), 776–86. pubmed.ncbi.nlm.nih.gov/27423262
i41World Health Organization. Obesity and overweight. WHO Newsroom. 1 April 2020.www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
i42Australian Institute of Health and Welfare. (2020). Overweight & obesity: Overview. AIHW, Australian Government, Canberra. www.aihw.gov.au/reports-data/behaviours-risk-factors/overweight-obesity/overview
i43Branca, F. et al. (2019). Transforming the food system to fight non-communicable diseases. BMJ, 364, l296. www.bmj.com/content/364/bmj.l296
i44Public Health Association of Australia, National Heart Foundation of Australia, Dietitians Association of Australia and Nutrition Australia. (2017). Joint policy statement: Towards a national nutrition policy for Australia. Public Health Association of Australia. www.phaa.net.au/documents/item/1987

ChapterReference NumberContentURL
Part 11Gakidou, E. et al. (2017). Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. The Lancet, 390(10100), 1345–1422. www.sciencedirect.com/science/article/pii/S0140673617323668
Part 12Branca, F. et al. (2019). Transforming the food system to fight non-communicable diseases. BMJ, 364, l296. www.bmj.com/content/364/bmj.l296
Part 13Afshin, A. et al. (2019). Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. The Lancet, 393(10184), 1958–72. www.sciencedirect.com/science/article/pii/S0140673619300418
Part 14Machado, P. P. et al. (2019). Ultra-processed foods and recommended intake levels of nutrients linked to non-communicable diseases in Australia: Evidence from a nationally representative cross-sectional study. BMJ Open, 9(8), e029544. bmjopen.bmj.com/content/9/8/e029544
Part 15Australian Bureau of Statistics. Media release: Consumption of added sugars exceeds recommendations. 27 April 2016.www.abs.gov.au/ausstats/abs@.nsf/Lookup/4364.0.55.011main+features12011-12
Part 16Ritchie, H. and Roser, M. (2019). Meat and Dairy Production. Our World in Data. ourworldindata.org/meat-production
Part 17Australian Bureau of Statistics. (2018). National Health Survey: First results. Australian Bureau of Statistics (ABS), Australian Government, Canberra. www.abs.gov.au/statistics/health/health-conditions-and-risks/national-health-survey-first-results/2017-18
Part 18Fayet-Moore, F., Cassettari, T., Tuck, K., McConnell, A. and Petocz, P. (2018). Dietary fibre intake in Australia. Paper I: Associations with demographic, socio-economic, and anthropometric factors. Nutrients, 10(5), 599. www.mdpi.com/2072-6643/10/5/599
11Branca, F. et al. (2019). Transforming the food system to fight non-communicable diseases. BMJ, 364, l296. www.bmj.com/content/364/bmj.l296
12Moodie, R. et al. (2013). Profits and pandemics: Prevention of harmful effects of tobacco, alcohol, and ultra-processed food and drink industries. The Lancet, 381(9867), 670–9. www.sciencedirect.com/science/article/pii/S0140673612620893
13Hueston, W. and McLeod, A. (2012). Overview of the Global Food System: Changes over time/space and lessons for future food safety in Improving Food Safety Through a One Health Approach: Workshop summary. www.ncbi.nlm.nih.gov/books/NBK114491
14Wilder, R. M. (1956). A brief history of the enrichment of flour and bread. Journal of the American Medical Association, 162(17), 1539–41. jamanetwork.com/journals/jama/article-abstract/319273
15Bishai, D. and Nalubola, R. (2002). The history of food fortification in the United States: Its relevance for current fortification efforts in developing countries. Economic Development and Cultural Change, 51(1), 37–53. www.journals.uchicago.edu/doi/full/10.1086/345361
16Backstrand, J. R. (2002). The history and future of food fortification in the United States: A public health perspective. Nutrition Reviews, 60(1), 15–26. academic.oup.com/nutritionreviews/article-abstract/60/1/15/1930396
17Food and Agriculture Organization of the United Nations. (2013). Food wastage footprint: Full-cost accounting: Final report. FAO.www.fao.org/3/a-i3991e.pdf
18Robertson, N. M., Sacks, G. and Miller, P. G. (2019). The revolving door between government and the alcohol, food and gambling industries in Australia. Public Health Research and Practice, 29(3), 2931921. www.phrp.com.au/wp-content/uploads/2019/09/PHRP2931921.pdf
19Mialon, M., Swinburn, B., Allender, S. and Sacks, G. (2017). ‘Maximising shareholder value’: A detailed insight into the corporate political activity of the Australian food industry. Australian and New Zealand Journal of Public Health, 41(2), 165–71. onlinelibrary.wiley.com/doi/abs/10.1111/1753-6405.12639
110Campbell, N., Mialon, M., Reilly, K., Browne, S. and Finucane, F. M. (2020). How are frames generated? Insights from the industry lobby against the sugar tax in Ireland. Social Science & Medicine, 264, 113215. www.sciencedirect.com/science/article/pii/S0277953620304342
111Petersen, A. New U.S. dietary guidelines reject recommendation to cut sugar, alcohol intake limit. Wall Street Journal. 29 December 2020. www.wsj.com/articles/new-u-s-dietary-guidelines-reject-recommendation-to-cut-sugar-alcohol-intake-11609254000
112Alberici, E. Sugar tax and the power of big business: How influence trumps evidence in politics. ABC News. 24 January 2018. www.abc.net.au/news/2018-01-24/sugar-tax-and-the-power-of-big-business/9353626
113Obesity Policy Coalition. (2019). Policy brief: The case for a healthy levy on sugary drinks. Obesity Policy Coalition, Melbourne. www.opc.org.au/downloads/policy-briefs/the-case-for-australian-tax-sugar-sweetened-beverages.pdf
114Watson, W. L., Lau, V., Wellard, L., Hughes, C. and Chapman, K. (2017). Advertising to children initiatives have not reduced unhealthy food advertising on Australian television. Journal of Public Health, 39(4), 787–92. academic.oup.com/jpubhealth/article-abstract/39/4/787/2966185
115Cobiac, L. J., Tam, K., Veerman, L. and Blakely, T. (2017). Taxes and subsidies for improving diet and population health in Australia: A cost-effectiveness modelling study. PLOS Medicine, 14(2), e1002232. journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1002232
116Baker, P. and Friel, S. (2016). Food systems transformations, ultra-processed food markets and the nutrition transition in Asia. Globalization and Health, 12(1), 80. link.springer.com/article/10.1186/s12992-016-0223-3
117Monteiro, C. A. and Cannon, G. (2012). The impact of transnational ‘big food’ companies on the South: A view from Brazil. PLOS Medicine, 9(7), e1001252. journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1001252
118Foote, C. Revolving doors: Want a high-paid job at the bank? Become a politician. Michael West Media. 27 May 2020. www.michaelwest.com.au/revolving-doors-want-a-high-paid-job-at-the-bank-become-a-politician
119Lucas, A. Revealed: The extent of job-swapping between public servants and fossil fuel lobbyists. The Conversation. 5 March 2018. theconversation.com/revealed-the-extent-of-job-swapping-between-public-servants-and-fossil-fuel-lobbyists-88695
120Moss, M. Salt Sugar Fat: How the food giants hooked us. Random House, New York, 2014. www.penguin.com.au/books/salt-sugar-fat-9781448133871
121Australian Institute of Health and Welfare. (2018). Australia’s Health 2018: Fruit and vegetable intake. AIHW, Australian Government, Canberra. www.aihw.gov.au/reports/australias-health/australias-health-2018/contents/indicators-of-australias-health/fruit-and-vegetable-intake
122Lustig, R. H. (2020). Ultraprocessed food: Addictive, toxic, and ready for regulation. Nutrients, 12(11), 3401. www.mdpi.com/2072-6643/12/11/3401
123Pan American Health Organization. (2015). Ultra-processed food and drink products in Latin America: Trends, impact on obesity, policy implications. Pan American Health Organization (PAHO), Washington, D.C. iris.paho.org/bitstream/handle/10665.2/7699/9789275118641_eng.pdf
124Espel‐Huynh, H. M., Muratore, A. F. and Lowe, M. R. (2018). A narrative review of the construct of hedonic hunger and its measurement by the Power of Food Scale. Obesity Science and Practice, 4(3), 238–49. onlinelibrary.wiley.com/doi/abs/10.1002/osp4.161
125Spence, C. (2015). Eating with our ears: Assessing the importance of the sounds of consumption on our perception and enjoyment of multisensory flavour experiences. Flavour, 4(1), 3. link.springer.com/article/10.1186/2044-7248-4-3
126Rao, P., Rodriguez, R. L. and Shoemaker, S. P. (2018). Addressing the sugar, salt, and fat issue the science of food way. NPJ Science of Food, 2, 12. www.nature.com/articles/s41538-018-0020-x
127Barley, S. Earliest evidence of humans thriving on the savannah. New Scientist. 21 October 2009. www.newscientist.com/article/dn18018-earliest-evidence-of-humans-thriving-on-the-savannah
128Power, M. L. and Schulkin, J. The Evolution of Obesity. Johns Hopkins University Press, Baltimore, 2013. jhupbooks.press.jhu.edu/title/evolution-obesity
129Hall, K. D. (2018). Did the food environment cause the obesity epidemic? Obesity, 26(1), 11–13. onlinelibrary.wiley.com/doi/abs/10.1002/oby.22073
130Wiss, D. A., Avena, N. and Rada, P. (2018). Sugar addiction: From evolution to revolution. Frontiers in Psychiatry, 9, 545. www.frontiersin.org/articles/10.3389/fpsyt.2018.00545/full?report=reader
131Schulte, E. M., Avena, N. M. and Gearhardt, A. N. (2015). Which foods may be addictive? The roles of processing, fat content, and glycemic load. PLOS One, 10(2), e0117959.journals.plos.org/plosone/article?id=10.1371/journal.pone.0117959
132Gordon, E. L., Ariel-Donges, A. H., Bauman, V. and Merlo, L. J. (2018). What is the evidence for ‘food addiction’? A systematic review. Nutrients, 10(4), 477www.mdpi.com/2072-6643/10/4/477
133Lenoir, M., Serre, F., Cantin, L. and Ahmed, S. H. (2007). Intense sweetness surpasses cocaine reward. PLOS One, 2(8), e698. journals.plos.org/plosone/article?id=10.1371/journal.pone.0000698
134Volkow, N. D., Wang, G. J. and Baler, R. D. (2011). Reward, dopamine and the control of food intake: Implications for obesity. Trends in Cognitive Sciences, 15(1), 37–46www.sciencedirect.com/science/article/pii/S1364661310002470
135Machado, P. P. et al. (2019). Ultra-processed foods and recommended intake levels of nutrients linked to non-communicable diseases in Australia: Evidence from a nationally representative cross-sectional study. BMJ Open, 9(8), e029544. bmjopen.bmj.com/content/9/8/e029544
136Machado, P. P. et al. (2020). Ultra-processed food consumption and obesity in the Australian adult population. Nutrition & Diabetes, 10(1), 1–11. www.nature.com/articles/s41387-020-00141-0
137Fiolet, T. et al. (2018). Consumption of ultra-processed foods and cancer risk: Results from NutriNet-Santé prospective cohort. BMJ, 360, k322. www.bmj.com/content/360/bmj.k322
138Srour, B. et al. (2019). Ultra-processed food intake and risk of cardiovascular disease: Prospective cohort study (NutriNet-Santé). BMJ, 365, l1451. www.bmj.com/content/365/bmj.l1451
139Rico-Campà, A., Martínez-González, M. A., Alvarez-Alvarez, I., de Deus Mendonça, R., de la Fuente-Arrillaga, C., Gómez-Donoso, C. and Bes-Rastrollo, M. (2019). Association between consumption of ultra-processed foods and all cause mortality: SUN prospective cohort study. BMJ, 365, l1949. www.bmj.com/content/365/bmj.l1949
140Mendonça, R. D. D., Lopes, A. C. S., Pimenta, A. M., Gea, A., Martinez-Gonzalez, M. A. and Bes-Rastrollo, M. (2017). Ultra-processed food consumption and the incidence of hypertension in a Mediterranean cohort: The Seguimiento Universidad de Navarra Project. American Journal of Hypertension, 30(4), 358–66. academic.oup.com/ajh/article-abstract/30/4/358/2645510
141Aguayo-Patrón, S. V. and Calderón de la Barca, A. M. (2017). Old fashioned vs. ultra-processed-based current diets: Possible implication in the increased susceptibility to type 1 diabetes and celiac disease in childhood. Foods, 6(11), 100. www.mdpi.com/2304-8158/6/11/100
142Schnabel, L. et al. (2018). Association between ultra-processed food consumption and functional gastrointestinal disorders: Results from the French NutriNet-Santé cohort. American Journal of Gastroenterology, 113(8), 1217–28. pubmed.ncbi.nlm.nih.gov/29904158
143Bonaccio, M. et al. (2020). Ultra-processed food consumption is associated with increased risk of all-cause and cardiovascular mortality in the Moli-sani Study. American Journal of Clinical Nutrition, nqaa299. Advance online publication.pubmed.ncbi.nlm.nih.gov/33333551
144Lopes, A. E. D. S. C., Araújo, L. F., Levy, R. B., Barreto, S. M. and Giatti, L. (2019). Association between consumption of ultra-processed foods and serum C-reactive protein levels: cross-sectional results from the ELSA-Brasil study. Sao Paulo Medical Journal, 137(2), 169–76. www.researchgate.net/publication/334530416_Association_between_consumption_of_ultra-processed_foods_and_serum_C-reactive_protein_levels_cross-sectional_results_from_the_ELSA-Brasil_study
145Wise, J. (2016). Sugar industry paid for dietary research in 1960s, analysis shows. BMJ, 354, i4936. www.bmj.com/content/354/bmj.i4936
146Nestle, M. (2016). Corporate funding of food and nutrition research: Science or marketing? JAMA Internal Medicine, 176(1), 13–14.jamanetwork.com/journals/jamainternalmedicine/article-abstract/2471609
147Lesser, L. I., Ebbeling, C. B., Goozner, M., Wypij, D. and Ludwig, D. S. (2007). Relationship between funding source and conclusion among nutrition-related scientific articles. PLOS Medicine, 4(1), e5. journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.0040005
148Steele, S., Ruskin, G., McKee, M. and Stuckler, D. (2019). ‘Always read the small print’: A case study of commercial research funding, disclosure and agreements with Coca-Cola. Journal of Public Health Policy, 40(3), 273–85. link.springer.com/article/10.1057/s41271-019-00170-9
149Kearns, C. E., Schmidt, L. A. and Glantz, S. A. (2016). Sugar industry and coronary heart disease research: A historical analysis of internal industry documents. JAMA Internal Medicine, 176(11), 1680–5. jamanetwork.com/journals/jamainternalmedicine/article-abstract/2548255
150Nestle, M. (2016). Food industry funding of nutrition research: The relevance of history for current debates. JAMA Internal Medicine, 176(11), 168–6.jamanetwork.com/journals/jamainternalmedicine/article-abstract/2548251
151O’Connor, A. How the sugar industry shifted blame to fat. New York Times. 12 September 2016. www.nytimes.com/2016/09/13/well/eat/how-the-sugar-industry-shifted-blame-to-fat.html
152O’Connor, A. Coca-Cola funds scientists who shift blame for obesity away from bad diets. Well: New York Times blogs. 9 August 2015. well.blogs.nytimes.com/2015/08/09/coca-cola-funds-scientists-who-shift-blame-for-obesity-away-from-bad-diets
153Fabbri, A., Holland, T. J. and Bero, L. A. (2018). Food industry sponsorship of academic research: Investigating commercial bias in the research agenda. Public Health Nutrition, 21(18), 3422–30. www.cambridge.org/core/journals/public-health-nutrition/article/food-industry-sponsorship-of-academic-research-investigating-commercial-bias-in-the-research-agenda/A4D9C0DC429218D5EFDFBE80FAE5E087
154Lucas, A. New research shows Coke has led efforts by US junk food companies to shape China’s obesity policy. CNBC, 10 January 2019. www.cnbc.com/2019/01/10/coke-junk-food-companies-have-been-shaping-chinas-obesity-policy.html
155Griffin, S. (2020). Coca-Cola sought to shift blame for obesity by funding public health conferences, study reports. BMJ, 371, m4718. www.bmj.com/content/371/bmj.m4718
156Barlow, P., Serôdio, P., Ruskin, G., McKee, M. and Stuckler, D. (2018). Science organisations and Coca-Cola’s ‘war’ with the public health community: Insights from an internal industry document. Journal of Epidemiology and Community Health, 72(9), 761–jech.bmj.com/content/72/9/761
157Strom, M. and Hatch, P. What Coca-Cola isn’t telling you about its health funding in Australia. Sydney Morning Herald. 24 February 2016. www.smh.com.au/business/consumer-affairs/what-cocacola-isnt-telling-you-about-its-health-funding-in-australia-20160218-gmx3l3.html
158Davey, M. Sugar tax: Why health experts want it but politicians and industry are resisting. Guardian Australia. 10 January 2018. www.theguardian.com/australia-news/2018/jan/10/sugar-tax-why-health-experts-want-it-but-politicians-and-industry-are-resisting
159Grynbaum, M. M. Soda makers begin their push against New York ban. New York Times. 1 July 2012. www.nytimes.com/2012/07/02/nyregion/in-fight-against-nyc-soda-ban-industry-focuses-on-personal-choice.html
160Clarke, R., Frost, C., Collins, R., Appleby, P. and Peto, R. (1997). Dietary lipids and blood cholesterol: Quantitative meta-analysis of metabolic ward studies. BMJ (Clinical Research Ed.), 314(7074), 112–17.www.bmj.com/content/314/7074/112
161Carson, J. A. S. et al. (2020). Dietary cholesterol and cardiovascular risk: A science advisory from the American Heart Association. Circulation, 141(3), e39–e53. www.ahajournals.org/doi/abs/10.1161/CIR.0000000000000743
162Arnett, D. K. et al. (2019). 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation, 140(11), e596–e646. www.ahajournals.org/doi/full/10.1161/CIR.0000000000000678
163Jacobson, T. A. et al. (2015). National Lipid Association recommendations for patient-centered management of dyslipidemia: Part 2. Journal of Clinical Lipidology, 9(6), S1–122. www.sciencedirect.com/science/article/pii/S1933287415003803
164Barnard, N. D., Long, M. B., Ferguson, J. M., Flores, R. and Kahleova, H. (2019). Industry funding and cholesterol research: A systematic review. American Journal of Lifestyle Medicine, 1559827619892198. journals.sagepub.com/doi/abs/10.1177/1559827619892198
165Johnston, B. C. et al. (2019). Unprocessed red meat and processed meat consumption: Dietary guideline recommendations from the Nutritional Recommendations (NutriRECS) Consortium. Annals of Internal Medicine, 171(10), 756–64. www.acpjournals.org/doi/abs/10.7326/M19-1621
166WHO Team. Cancer: Carcinogenicity of the consumption of red meat and processed meat. WHO Newsroom. 2016.www.who.int/news-room/q-a-detail/cancer-carcinogenicity-of-the-consumption-of-red-meat-and-processed-meat
167Valli, C. et al. (2019). Health-related values and preferences regarding meat consumption: A mixed-methods systematic review. Annals of Internal Medicine, 171(10), 742–55.www.acpjournals.org/doi/abs/10.7326/M19-1326
168Correction: Nutritional Recommendations (NutriRECS) on consumption of red and processed meat. Annals of Internal Medicine. 4 February 2020.www.acpjournals.org/doi/10.7326/L19-0822
169Mole, B. Researcher promoting red meat, sugar failed to disclose industry ties – again. Ars Technica. 8 January 2020. arstechnica.com/science/2020/01/researcher-promoting-red-meat-sugar-failed-to-disclose-industry-ties-again
170Reiley, L. Research group that discounted risks of red meat has ties to program partly backed by beef industry. Washington Post. 24 October 2019. www.washingtonpost.com/business/2019/10/14/research-group-that-discounted-risks-red-meat-has-ties-program-partly-backed-by-beef-industry
171Erickson, J., Sadeghirad, B., Lytvyn, L., Slavin, J. and Johnston, B. C. (2017). The scientific basis of guideline recommendations on sugar intake: A systematic review. Annals of Internal Medicine, 166(4), 257–67. www.acpjournals.org/doi/abs/10.7326/m16-2020
172Parker-Pope, T. and O’Connor, A. Scientist who discredited meat guidelines didn’t report past food industry ties. New York Times. 4 October 2019. www.nytimes.com/2019/10/04/well/eat/scientist-who-discredited-meat-guidelines-didnt-report-past-food-industry-ties.html
173Steele, S., Ruskin, G. and Stuckler, D. (2020). Pushing partnerships: Corporate influence on research and policy via the International Life Sciences Institute. Public Health Nutrition, 23(11), 2032–40. www.cambridge.org/core/journals/public-health-nutrition/article/pushing-partnerships-corporate-influence-on-research-and-policy-via-the-international-life-sciences-institute/C42EDA188F5E66983D80C8A44E90AB21
174The Tobacco Free Initiative, World Health Organization. (2001). The Tobacco Industry and Scientific Groups: ILSI: A Case Study. United Nations, Geneva. www.who.int/tobacco/media/en/ILSI.pdf
175Healthy Kids Association. Partners and sponsors. Healthy Kids Association.healthy-kids.com.au/about/get-involved/sponsors-partners
176Dairy Australia. Discover Dairy.www.dairy.edu.au
177Meat & Livestock Australia. School’s In. MLA – Meat & Livestock Australia. 23 May 2019.www.mla.com.au/news-and-events/industry-news/schools-in
178Medew, J. Premier Daniel Andrew backs McDonald’s in hospital as part of a ‘balanced offering’. Sydney Morning Herald. 7 January 2015. www.smh.com.au/healthcare/premier-daniel-andrew-backs-mcdonalds-in-hospital-as-part-of-a-balanced-offering-20150107-12jpbq.html
179Sahud, H. B., Binns, H. J., Meadow, W. L. and Tanz, R. R. (2006). Marketing fast food: Impact of fast food restaurants in children’s hospitals. Pediatrics, 118(6), 2290–7. pediatrics.aappublications.org/content/118/6/2290.short
180Australian Institute of Health and Welfare. (2020). Overweight & obesity: Overview. AIHW, Australian Government, Canberra. www.aihw.gov.au/reports-data/behaviours-risk-factors/overweight-obesity/overview
181AFL Partners. Australian Football League (AFL). (accessed 23 November 2020)www.afl.com.au/about-afl/partners/corporate
1822019 AFL Season by the TV ratings numbers. Sports Industry AU. 30 September 2019.www.footyindustry.com/?p=4889
183Stuckler, D. and Nestle, M. (2012). Big food, food systems, and global health. PLOS Medicine, 9(6), e1001242. journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1001242
184Obesity Evidence Hub. (2020). Prevention: Marketing to Children: Australia’s regulation of food marketing. Cancer Council Victoria, Melbourne. www.obesityevidencehub.org.au/collections/prevention/australias-system-of-regulation
185Ronit, K. and Jensen, J. D. (2014). Obesity and industry self-regulation of food and beverage marketing: A literature review. European Journal of Clinical Nutrition, 68(7), 753–9. www.nature.com/articles/ejcn201460
186King, L., Hebden, L., Grunseit, A., Kelly, B. and Chapman, K. (2013). Building the case for independent monitoring of food advertising on Australian television. Public Health Nutrition, 16(12), 2249–54. www.cambridge.org/core/journals/public-health-nutrition/article/building-the-case-for-independent-monitoring-of-food-advertising-on-australian-television/2D3CD7C61B2B1AECB6532642D58205ED
187Bell, C., Pond, N., Davies, L., Francis, J. L., Campbell, E. and Wiggers, J. (2013). Healthier choices in an Australian health service: A pre-post audit of an intervention to improve the nutritional value of foods and drinks in vending machines and food outlets. BMC Health Services Research, 13, 492. www.ncbi.nlm.nih.gov/pmc/articles/PMC4222841
188Tsai, C., Svensen, E., Flood, V. M., Probst, Y., Reilly, K., Corbett, S. and Wu, J. (2018). Healthiness of food and beverages for sale at two public hospitals in New South Wales, Australia. Nutrients, 10(2), 216. www.ncbi.nlm.nih.gov/pmc/articles/PMC5852792
21Dixit, S. K. and Sambasivan, M. (2018). A review of the Australian healthcare system: A policy perspective. SAGE Open Medicine. journals.sagepub.com/doi/abs/10.1177/2050312118769211
22Crosland, P., Ananthapavan, J., Davison, J., Lambert, M. and Carter, R. (2019). The economic cost of preventable disease in Australia: A systematic review of estimates and methods. Australian and New Zealand Journal of Public Health, 43(5), 484–95. onlinelibrary.wiley.com/doi/abs/10.1111/1753-6405.12925
23Australian Institute of Health and Welfare. (2014). Australia’s Health 2014. Australia’s Health series no. 14. Cat. no. AUS 178. AIHW, Australian Government, Canberra. www.aihw.gov.au/getmedia/6c8ffb4a-a0f6-49f8-9b05-01f2157b822c/8_1-health-prevention.pdf
24Australian Institute of Health and Welfare. (2019). Disease expenditure in Australia. AIHW, Australian Government, Canberra. www.aihw.gov.au/reports/health-welfare-expenditure/disease-expenditure-australia/contents/overview
25Moodie, R. et al. (2013). Profits and pandemics: Prevention of harmful effects of tobacco, alcohol, and ultra-processed food and drink industries. The Lancet, 381(9867), 670–9. www.sciencedirect.com/science/article/pii/S0140673612620893
26Stuckler, D. and Nestle, M. (2012). Big food, food systems, and global health. PLOS Medicine, 9(6), e1001242. journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1001242
27Knaus, C. and Evershed, N. Pharmaceutical industry donates millions to both Australian political parties. Guardian Australia. 25 September 2018. www.theguardian.com/business/2018/sep/25/pharmaceutical-industry-donates-millions-to-both-australian-political-parties
28Mialon, M., Swinburn, B., Allender, S. and Sacks, G. (2016). Systematic examination of publicly-available information reveals the diverse and extensive corporate political activity of the food industry in Australia. BMC Public Health, 16(1), 283. link.springer.com/article/10.1186/s12889-016-2955-7
29Knaus, C. More than $100m donated to political parties from hidden sources in election year. Guardian Australia. 11 February 2020. www.theguardian.com/australia-news/2020/feb/11/more-than-100m-donated-to-political-parties-from-hidden-sources-in-election-year
210Australian Institute of Health and Welfare. (2020). Australia’s Health 2020: In brief. Australia’s Health Series no. 17, Cat. no. AUS 232. AIHW, Australian Government, Canberra. www.aihw.gov.au/getmedia/2aa9f51b-dbd6-4d56-8dd4-06a10ba7cae8/aihw-aus-232.pdf.aspx
211Meat & Livestock Australia. Export values hit new highs. MLA – Meat & Livestock Australia. 27 June 2019.www.mla.com.au/prices-markets/market-news/export-values-hit-new-highs
212Bless, A. Does Australia need a tax on red meat? Sydney Environment Institute. 17 December 2018. sei.sydney.edu.au/opinion/australia-need-tax-red-meat
213Wutzke, S., Morrice, E., Benton, M., Milat, A., Russell, L. and Wilson, A. (2018). Australia’s national partnership agreement on preventive health: Critical reflections from states and territories. Health Promotion Journal of Australia, 29(3), 228–35. www.ncbi.nlm.nih.gov/pmc/articles/PMC6635816
214Huang, T., Yang, B., Zheng, J., Li, G., Wahlqvist, M. L. and Li, D. (2012). Cardiovascular disease mortality and cancer incidence in vegetarians: A meta-analysis and systematic review. Annals Of Nutrition and Metabolism, 60(4), 233–40. pubmed.ncbi.nlm.nih.gov/22677895
215Key, T. J. et al. (1998). Mortality in vegetarians and non-vegetarians: A collaborative analysis of 8300 deaths among 76,000 men and women in five prospective studies. Public Health Nutrition, 1(1), 33–41. pubmed.ncbi.nlm.nih.gov/10555529
216Pimentel, D. and Pimentel, M. (2003). Sustainability of meat-based and plant-based diets and the environment. American Journal of Clinical Nutrition, 78(3), 660S–3S. academic.oup.com/ajcn/article/78/3/660S/4690010
217Kestin, M., Rouse, I. L., Correll, R. A. and Nestel, P. J. (1989). Cardiovascular disease risk factors in free-living men: Comparison of two prudent diets, one based on lactoovovegetarianism and the other allowing lean meat. American Journal of Clinical Nutrition, 50(2), 280–7. academic.oup.com/ajcn/article-abstract/50/2/280/4650993
218Sofi, F., Abbate, R., Gensini, G. F. and Casini, A. (2010). Accruing evidence on benefits of adherence to the Mediterranean diet on health: An updated systematic review and meta-analysis. American Journal of Clinical Nutrition, 92(5), 1189–96. pubmed.ncbi.nlm.nih.gov/20810976
219de Lorgeril, M. et al. (1994). Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease. The Lancet, 343(8911), 1454–9. pubmed.ncbi.nlm.nih.gov/7911176
220Stehfest, E., Bouwman, L., Van Vuuren, D. P., Den Elzen, M. G., Eickhout, B. and Kabat, P. (2009). Climate benefits of changing diet. Climatic Change, 95(1), 83–102. link.springer.com/article/10.1007/s10584-008-9534-6
221Kendall, C. W. and Jenkins, D. J. (2004). A dietary portfolio: Maximal reduction of low-density lipoprotein cholesterol with diet. Current Atherosclerosis Reports, 6(6), 492–8. link.springer.com/article/10.1007/s11883-004-0091-9
222Reynolds, A., Mann, J., Cummings, J., Winter, N., Mete, E. and Te Morenga, L. (2019). Carbohydrate quality and human health: A series of systematic reviews and meta-analyses. The Lancet, 393(10170), 434–45. www.sciencedirect.com/science/article/pii/S0140673618318099
223Hall, K. D. et al. (2019). Ultra-processed diets cause excess calorie intake and weight gain: An inpatient randomized controlled trial of ad libitum food intake. Cell Metabolism, 30(1), 67–77. www.sciencedirect.com/science/article/pii/S1550413119302487
224Food and Agriculture Organization of the United Nations. (2014). Food based dietary guidelines – Brazil. FAO, Rome. www.fao.org/nutrition/education/food-dietary-guidelines/regions/brazil/en
225Health Canada. (2018). Canada’s Dietary Guidelines: For health professionals and policy makers. Government of Canada, Ottawa. food-guide.canada.ca/sites/default/files/artifact-pdf/CDG-EN-2018.pdf
226AusTender. (2009). Contract Notice View - CN162381. AusTender, Australian Government, Canberra. www.tenders.gov.au/Cn/Show/C49E341D-0E68-B1E0-066C-17BECC45EE0C
227About Us. Dietitians Australia. (accessed 23 November 2020)dietitiansaustralia.org.au/about-daa
228Simon, M. And now a word from our sponsors: Australian edition: Is the Dietitians Association of Australia in the pocket of Big Food? Eat Drink Politics. February 2015. www.eatdrinkpolitics.com/wp-content/uploads/DAAReportEatDrinkPolitics.pdf
229Kris-Etherton, P. M. et al. (2014). The need to advance nutrition education in the training of health care professionals and recommended research to evaluate implementation and effectiveness. American Journal of Clinical Nutrition, 99(5), 1153S–1166S. academic.oup.com/ajcn/article-abstract/99/5/1153S/4577451
230Parker, W. A., Steyn, N. P., Levitt, N. S. and Lombard, C. J. (2011). They think they know but do they? Misalignment of perceptions of lifestyle modification knowledge among health professionals. Public Health Nutrition, 14(8), 1429–38. www.cambridge.org/core/journals/public-health-nutrition/article/they-think-they-know-but-do-they-misalignment-of-perceptions-of-lifestyle-modification-knowledge-among-health-professionals/72F584BCCEEC1EEAD54E04978236B127
231Adams, K. M., Lindell, K. C., Kohlmeier, M. and Zeisel, S. H. (2006). Status of nutrition education in medical schools. American Journal of Clinical Nutrition, 83(4), 941S–944S. academic.oup.com/ajcn/article-abstract/83/4/941S/4649273
232Lenders, C. et al. (2013). A novel nutrition medicine education model: The Boston University experience. Advances in Nutrition, 4(1), 1–7. academic.oup.com/advances/article-abstract/4/1/1/4591555
233Crowley, J., Ball, L., Laur, C., Wall, C., Arroll, B., Poole, P. and Ray, S. (2015). Nutrition guidelines for undergraduate medical curricula: A six-country comparison. Advances in Medical Education and Practice, 6, 127. www.ncbi.nlm.nih.gov/pmc/articles/PMC4337413/
234Morris, N. P. (2014). The neglect of nutrition in medical education: A firsthand look. JAMA Internal Medicine, 174(6), 841–2. jamanetwork.com/journals/jamainternalmedicine/article-abstract/1860501
235Medical Board of Australia. (2018). List of specialties, fields of specialty practice and related specialist titles. Australian Health Practitioner Regulation Agency (Ahpra), Melbourne. www.medicalboard.gov.au/registration/types/specialist-registration/medical-specialties-and-specialty-fields.aspx
236Schoendorfer, N. and Schafer, J. (2015). Enabling valuation of nutrition integration into MBBS program. Journal of Biomedical Education, 2015. www.hindawi.com/journals/jbe/2015/760104/abs
237Crowley, J., Ball, L. and Hiddink, G. J. (2019). Nutrition in medical education: A systematic review. The Lancet Planetary Health, 3(9), e379–e389. www.sciencedirect.com/science/article/pii/S2542519619301718
238Mogre, V., Stevens, F. C., Aryee, P. A., Amalba, A. and Scherpbier, A. J. (2018). Why nutrition education is inadequate in the medical curriculum: A qualitative study of students’ perspectives on barriers and strategies. BMC Medical Education, 18(1), 26. link.springer.com/article/10.1186/s12909-018-1130-5
239Warner, K. E. (2014). 50 years since the first Surgeon General’s report on smoking and health: A happy anniversary? American Journal of Public Health, 104(1), 5–8. ajph.aphapublications.org/doi/full/10.2105/AJPH.2013.301722
240Warner K. E. (2002). What’s a cigarette company to do? American Journal of Public Health, 92(6), 897–900. www.ncbi.nlm.nih.gov/pmc/articles/PMC1447479
241Doll, R. and Hill, A. B. (1954). The mortality of doctors in relation to their smoking habits: A preliminary report. BMJ, 1(4877), 1451–5. www.ncbi.nlm.nih.gov/pmc/articles/PMC2085438
242Branca, F. et al. (2019). Transforming the food system to fight non-communicable diseases. BMJ, 364, l296. www.bmj.com/content/364/bmj.l296
243Harmon, B. E. et al. (2015). Associations of key diet-quality indexes with mortality in the Multiethnic Cohort: The Dietary Patterns Methods Project. American Journal of Clinical Nutrition, 101(3), 587–97. academic.oup.com/ajcn/article-abstract/101/3/587/4569413
244Liese, A. D. et al. (2015). The Dietary Patterns Methods Project: Synthesis of findings across cohorts and relevance to dietary guidance. Journal of Nutrition, 145(3), 393–402. academic.oup.com/jn/article-abstract/145/3/393/4743665
245Reedy, J., Krebs-Smith, S. M., Miller, P. E., Liese, A. D., Kahle, L. L., Park, Y. and Subar, A. F. (2014). Higher diet quality is associated with decreased risk of all-cause, cardiovascular disease, and cancer mortality among older adults. Journal of Nutrition, 144(6), 881–9. academic.oup.com/jn/article-abstract/144/6/881/4615977
246Fabbri, A., Grundy, Q., Mintzes, B., Swandari, S., Moynihan, R., Walkom, E. and Bero, L. A. (2017). A cross-sectional analysis of pharmaceutical industry-funded events for health professionals in Australia. BMJ Open, 7(6), e016701. bmjopen.bmj.com/content/7/6/e016701
247Han, E. Alarm over drug companies’ extravagant spending and influence on doctors. Sydney Morning Herald. 10 January 2018. www.smh.com.au/healthcare/alarm-over-drug-companies-extravagant-spending-and-influence-on-doctors-20180110-h0g692.html
248DeJong, C., Aguilar, T., Tseng, C. W., Lin, G. A., Boscardin, W. J. and Dudley, R. A. (2016). Pharmaceutical industry–sponsored meals and physician prescribing patterns for Medicare beneficiaries. JAMA Internal Medicine, 176(8), 1114–22. jamanetwork.com/journals/jamainternalmedicine/fullarticle/2528290/
249Gagne, J. J. et al. (2014). Comparative effectiveness of generic and brand-name statins on patient outcomes: A cohort study. Annals of Internal Medicine, 161(6), 400–7. www.acpjournals.org/doi/abs/10.7326/M13-2942
250Australian Pharmaceutical Market to Surpass $25 Billion. Drug Development & Delivery. [No date].drug-dev.com/australian-pharmaceutical-market-to-surpass-25-billion
251Cancer Australia. (2019). Cancer Mortality. National Cancer Control Indicators, Cancer Australia, Australian Government, Canberra. ncci.canceraustralia.gov.au/outcomes/cancer-mortality/cancer-mortality
252Onagan, F. C. C., Ho, B. L. C. and Chua, K. K. T. (2019). Development of a sweetened beverage tax, Philippines. Bulletin of the World Health Organization, 97, 154–9. www.ncbi.nlm.nih.gov/pmc/articles/PMC6357562
253Blake, M. R. et al. (2018). Retailer-led sugar-sweetened beverage price increase reduces purchases in a hospital convenience store in Melbourne, Australia: A mixed methods evaluation. Journal of the Academy of Nutrition and Dietetics, 118(6), 1027–36. www.sciencedirect.com/science/article/pii/S2212267217310055
254Mikkelson, D. Thomas Edison on the ‘Doctor of the Future’. Snopes. 25 January 2015.www.snopes.com/fact-check/the-doctor-of-the-future
31Australian Institute of Health and Welfare. (2018). Nutrition across the life stages. Cat. no. PHE 227. AIHW, Australian Government, Canberra. www.aihw.gov.au/getmedia/fc5ad42e-08f5-4f9a-9ca4-723cacaa510d/aihw-phe-227.pdf
32Mozaffarian, D., Rosenberg, I. and Uauy, R. (2018). History of modern nutrition science – Implications for current research, dietary guidelines, and food policy. BMJ, 361, k2392. www.bmj.com/content/361/bmj.k2392
33Lai, J. C. Australasian health star rating system could be much improved. Otago Daily Times. 10 July 2019. www.odt.co.nz/lifestyle/food-wine/news-features/australasian-health-star-rating-system-could-be-much-improved
34Dickie, S., Woods, J. L. and Lawrence, M. (2018). Analysing the use of the Australian Health Star Rating system by level of food processing. International Journal of Behavioral Nutrition and Physical Activity, 15(1), 1–9. ijbnpa.biomedcentral.com/articles/10.1186/s12966-018-0760-7
35Machado, P. P. et al. (2019). Ultra-processed foods and recommended intake levels of nutrients linked to non-communicable diseases in Australia: Evidence from a nationally representative cross-sectional study. BMJ Open, 9(8), e029544. bmjopen.bmj.com/content/9/8/e029544
36National Health and Medical Research Council. (2013). Australian Dietary Guidelines Summary. National Health and Medical Research Council, Canberra. www.eatforhealth.gov.au/sites/default/files/content/The%20Guidelines/n55a_australian_dietary_guidelines_summary_131014_1.pdf
37Obesity Policy Coalition. (2018). Policy brief: Improving the effectiveness of the Health Star Rating system. Obesity Policy Coalition, Melbourne. www.opc.org.au/downloads/policy-briefs/improving-the-effectiveness-of-the-health-star-rating-system.pdf
38Longmire, M. Nutri-Grain and Milo Cereal lose Health Stars under proposed changes. Choice. 1 July 2019. www.choice.com.au/food-and-drink/nutrition/food-labelling/articles/health-star-ratings-proposed-added-sugar-penalty
39Jones, A., Shahid, M. and Neal, B. (2018). Uptake of Australia’s Health Star Rating System. Nutrients, 10(8), 997. www.mdpi.com/2072-6643/10/8/997
310Zeviani, R. Are we really getting value from our promotions? Nielsen Insights. 3 August 2018. www.nielsen.com/au/en/insights/article/2018/are-we-really-getting-value-from-our-promotions
311Riesenberg, D. et al. (2019). Price promotions by food category and product healthiness in an Australian supermarket chain, 2017–2018. American Journal of Public Health, 109(10), 1434–9. ajph.aphapublications.org/doi/abs/10.2105/AJPH.2019.305229
312Ladher, N. (2016). Nutrition science in the media: You are what you read. BMJ, 353, i1879. www.bmj.com/content/353/bmj.i1879
313Grand View Research. (2020). Gluten-free products market size, share & trends analysis report by product (bakery products, dairy/dairy alternatives), by distribution channel (grocery stores, mass merchandiser), by region, and segment forecasts, 2020–2027. Grand View Research, San Francisco. www.grandviewresearch.com/industry-analysis/gluten-free-products-market
314Reynolds, A., Mann, J., Cummings, J., Winter, N., Mete, E. and Te Morenga, L. (2019). Carbohydrate quality and human health: A series of systematic reviews and meta-analyses. The Lancet, 393(10170), 434–45. www.sciencedirect.com/science/article/pii/S0140673618318099
315Lebwohl, B. et al. (2017). Long term gluten consumption in adults without celiac disease and risk of coronary heart disease: Prospective cohort study. BMJ, 357, j1892. www.bmj.com/content/357/bmj.j1892
316American Heart Association News. Drinking red wine for heart health? Read this before you toast. American Heart Association. 24 May 2019.www.heart.org/en/news/2019/05/24/drinking-red-wine-for-heart-health-read-this-before-you-toast
317American Heart Association News. Are there health benefits from chocolate? American Heart Association. 12 February 2019.www.heart.org/en/news/2019/02/12/are-there-health-benefits-from-chocolate
318Belluz, J. Dark chocolate is now a health food. Here’s how that happened. Vox. 20 August 2018. www.vox.com/science-and-health/2017/10/18/15995478/chocolate-health-benefits-heart-disease
319Buettner, D. and Skemp, S. (2016). Blue Zones: Lessons from the world’s longest lived. American Journal of Lifestyle Medicine, 10(5), 318–21. journals.sagepub.com/doi/abs/10.1177/1559827616637066
320Willcox, D. C., Scapagnini, G. and Willcox, B. J. (2014). Healthy aging diets other than the Mediterranean: A focus on the Okinawan diet. Mechanisms of Ageing and Development, 136, 148–62. www.sciencedirect.com/science/article/pii/S0047637414000037
321Orlich, M. J. et al. (2013). Vegetarian dietary patterns and mortality in Adventist Health Study 2. JAMA Internal Medicine, 173(13), 1230–8. jamanetwork.com/journals/jamainternalmedicine/article-abstract/1710093
322Harvard Women’s Health Watch. What’s the scoop on bone soup? Harvard Health Publishing. September 2015.www.health.harvard.edu/healthy-eating/whats-the-scoop-on-bone-soup
323Clement, J. Global time spent on social media daily 2018. Statista. January 2020. www.statista.com/statistics/433871/daily-social-media-usage-worldwide
324Mischel, W., Ebbesen, E. B. and Raskoff Zeiss, A. (1972). Cognitive and attentional mechanisms in delay of gratification. Journal of Personality and Social Psychology, 21(2), 204. psycnet.apa.org/record/1972-20631-001
325Casey, B. J. et al. (2011). Behavioral and neural correlates of delay of gratification 40 years later. Proceedings of the National Academy of Sciences, 108(36), 14998–15003. www.pnas.org/content/108/36/14998
326Mischel, W., Shoda, Y. and Peake, P. K. (1988). The nature of adolescent competencies predicted by preschool delay of gratification. Journal of Personality and Social Psychology, 54(4), 687. psycnet.apa.org/record/1988-19783-001
327Shoda, Y., Mischel, W. and Peake, P. K. (1990). Predicting adolescent cognitive and self-regulatory competencies from preschool delay of gratification: Identifying diagnostic conditions. Developmental Psychology, 26(6), 978. psycnet.apa.org/journals/dev/26/6/978.html
328Kidd, C., Palmeri, H. and Aslin, R. N. (2013). Rational snacking: Young children’s decision-making on the marshmallow task is moderated by beliefs about environmental reliability. Cognition, 126(1), 109–14. www.sciencedirect.com/science/article/pii/S0010027712001849

ChapterReference NumberContentURL
Part 21Lucas, R. M. and Rodney Harris, R. M. (2018). On the nature of evidence and ‘proving’ causality: Smoking and lung cancer vs. sun exposure, vitamin D and multiple sclerosis. International Journal of Environmental Research and Public Health, 15(8), 1726. www.mdpi.com/1660-4601/15/8/1726
Part 22Health Canada. (2018). Canada’s Dietary Guidelines: For health professionals and policy makers. Government of Canada, Ottawa. food-guide.canada.ca/sites/default/files/artifact-pdf/CDG-EN-2018.pdf
Part 23Grant, J. D. and Jenkins, D. J. (2018). Resisting influence from agri-food industries on Canada’s new food guide. Canadian Medical Association Journal, 190(15), E451–2. www.researchgate.net/publication/324541540_Resisting_influence_from_agri-food_industries_on_Canada%27s_new_food_guide
Part 24Is milk healthy? Canada’s new food guide says not necessarily. BBC News. 22 January 2019.www.bbc.com/news/world-us-canada-46964549
Part 25Health Canada. (2020). Eat protein foods. Canada’s Food Guide, Government of Canada, Ottawa. food-guide.canada.ca/en/healthy-eating-recommendations/make-it-a-habit-to-eat-vegetables-fruit-whole-grains-and-protein-foods/eat-protein-foods
41Aune, D. et al. (2016). BMI and all cause mortality: Systematic review and non-linear dose-response meta-analysis of 230 cohort studies with 3.74 million deaths among 30.3 million participants. BMJ, 353, i2156. www.bmj.com/content/353/bmj.i2156
42Fernandes, J. C. and GBD 2015 Obesity Collaborators. (2017). Health effects of overweight and obesity in 195 countries over 25 years. New England Journal of Medicine, 77(1), 13–27. www.nejm.org/doi/full/10.1056/NEJMoa1614362
43Zheng, Y. et al. (2017). Associations of weight gain from early to middle adulthood with major health outcomes later in life. JAMA, 318(3), 255–69. jamanetwork.com/journals/jama/article-abstract/2643761
44Kramer, C. K., Zinman, B. and Retnakaran, R. (2013). Are metabolically healthy overweight and obesity benign conditions? A systematic review and meta-analysis. Annals of Internal Medicine, 159(11), 758–69. www.acpjournals.org/doi/abs/10.7326/0003-4819-159-11-201312030-00008
45Sedlmeier, A. M. et al. (2021). Relation of body fat mass and fat-free mass to total mortality: Results from 7 prospective cohort studies. American Journal of Clinical Nutrition, 113(3), 639–46. academic.oup.com/ajcn/advance-article-abstract/doi/10.1093/ajcn/nqaa339/6092216
46Abdullah, A., Peeters, A., de Courten, M. and Stoelwinder, J. (2010). The magnitude of association between overweight and obesity and the risk of diabetes: A meta-analysis of prospective cohort studies. Diabetes Research and Clinical Practice, 89(3), 309–19. pubmed.ncbi.nlm.nih.gov/20493574
47Aune, D., Norat, T. and Vatten, L. J. (2015). Body mass index, abdominal fatness and the risk of gallbladder disease. European Journal of Epidemiology, 30(9), 1009–19. pubmed.ncbi.nlm.nih.gov/26374741
48Aune, D. et al. (2015). Anthropometric factors and endometrial cancer risk: A systematic review and dose-response meta-analysis of prospective studies. Annals of Oncology, 26(8), 1635–48. www.annalsofoncology.org/article/S0923-7534(19)31836-8
49Field, A. E., Coakley, E. H., Must, A., Spadano, J. L., Laird, N., Dietz, W. H., Rimm, E. and Colditz, G. A. (2001). Impact of overweight on the risk of developing common chronic diseases during a 10-year period. Archives of Internal Medicine, 161(13), 1581–6. pubmed.ncbi.nlm.nih.gov/11434789
410Anstey, K. J., Cherbuin, N., Budge, M. and Young, J. (2011). Body mass index in midlife and late‐life as a risk factor for dementia: A meta‐analysis of prospective studies. Obesity Reviews, 12(5), e426–37. onlinelibrary.wiley.com/doi/full/10.1111/j.1467-789X.2010.00825
411Khan, S. S. et al. (2018). Association of body mass index with lifetime risk of cardiovascular disease and compression of morbidity. JAMA Cardiology, 3(4), 280–7. www.ncbi.nlm.nih.gov/pmc/articles/PMC5875319
412Adams, K. F. et al. (2006). Overweight, obesity, and mortality in a large prospective cohort of persons 50 to 71 years old. New England Journal of Medicine, 355(8), 763–78. pubmed.ncbi.nlm.nih.gov/16926275
413Di Angelantonio, E. et al. (2016). Body-mass index and all-cause mortality: Individual-participant-data meta-analysis of 239 prospective studies in four continents. The Lancet, 388(10046), 776–86. pubmed.ncbi.nlm.nih.gov/27423262
414Mann, T., Tomiyama, A. J., Westling, E., Lew, A. M., Samuels, B. and Chatman, J. (2007). Medicare’s search for effective obesity treatments: Diets are not the answer. American Psychologist, 62(3), 220. psycnet.apa.org/doiLanding?doi=10.1037/0003-066X.62.3.220
415Wing, R. R. and Phelan, S. (2005). Long-term weight loss maintenance. American Journal of Clinical Nutrition, 82(1), 222S–5S. academic.oup.com/ajcn/article-abstract/82/1/222S/4863393
416Barry, V. W., Baruth, M., Beets, M. W., Durstine, J. L., Liu, J. and Blair, S. N. (2014). Fitness vs. fatness on all-cause mortality: A meta-analysis. Progress in Cardiovascular Diseases, 56(4), 382–90. www.sciencedirect.com/science/article/pii/S0033062013001552
417Harvard Heart Letter. Calories burned in 30 minutes for people of three different weights. Harvard Health Publishing. 13 August 2018.www.health.harvard.edu/diet-and-weight-loss/calories-burned-in-30-minutes-of-leisure-and-routine-activities
418Park, M. Twinkie diet helps nutrition professor lose 27 pounds. CNN. 8 November 2010. edition.cnn.com/2010/HEALTH/11/08/twinkie.diet.professor/index.html
419World Health Organization Regional Office for Europe. Body mass index – BMI. WHO/Europe.www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi
420Better Health Channel. (2019). Body mass index (BMI). Department of Health & Human Services, State Government of Victoria. www.betterhealth.vic.gov.au/health/healthyliving/body-mass-index-bmi
421Tolhurst, G. et al. (2012). Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein–coupled receptor FFAR2. Diabetes, 61(2), 364–71. diabetes.diabetesjournals.org/content/61/2/364
422Najjar, R. S. and Feresin, R. G. (2019). Plant-based diets in the reduction of body fat: Physiological effects and biochemical insights. Nutrients, 11(11), 2712. www.mdpi.com/2072-6643/11/11/2712
423Larraufie, P., Martin-Gallausiaux, C., Lapaque, N., Dore, J., Gribble, F. M., Reimann, F. and Blottiere, H. M. (2018). SCFAs strongly stimulate PYY production in human enteroendocrine cells. Scientific Reports, 8(1), 1–9. www.nature.com/articles/s41598-017-18259-0
424Al‐Lahham, S. A. H. et al. (2010). Regulation of adipokine production in human adipose tissue by propionic acid. European Journal of Clinical Investigation, 40(5), 401–7. onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2362.2010.02278.x
425Nilsson, A., Johansson, E., Ekström, L. and Björck, I. (2013). Effects of a brown beans evening meal on metabolic risk markers and appetite regulating hormones at a subsequent standardized breakfast: A randomized cross-over study. PLOS One, 8(4), e59985.journals.plos.org/plosone/article?id=10.1371/journal.pone.0059985
426Hall, K. D. et al. (2019). Ultra-processed diets cause excess calorie intake and weight gain: An inpatient randomized controlled trial of ad libitum food intake. Cell Metabolism, 30(1), 67–77. www.sciencedirect.com/science/article/pii/S1550413119302487
427Polsky, J. Y., Moubarac, J-C. and Garriguet, D. (2020). Consumption of ultra-processed foods in Canada. Health Reports, 31(11), 3–15. www150.statcan.gc.ca/n1/pub/82-003-x/2020011/article/00001-eng.htm
428Rauber, F., da Costa Louzada, M. L., Steele, E. M., Millett, C., Monteiro, C. A. and Levy, R. B. (2018). Ultra-processed food consumption and chronic non-communicable diseases-related dietary nutrient profile in the UK (2008–2014). Nutrients, 10(5), 587. www.mdpi.com/2072-6643/10/5/587
429Steele, E. M., Baraldi, L. G., da Costa Louzada, M. L., Moubarac, J. C., Mozaffarian, D. and Monteiro, C. A. (2016). Ultra-processed foods and added sugars in the US diet: Evidence from a nationally representative cross-sectional study. BMJ Open, 6(3), e009892. bmjopen.bmj.com/content/6/3/e009892
430Machado, P. P. et al. (2019). Ultra-processed foods and recommended intake levels of nutrients linked to non-communicable diseases in Australia: Evidence from a nationally representative cross-sectional study. BMJ Open, 9(8), e029544. bmjopen.bmj.com/content/9/8/e029544
431Key, T. J. et al. (1999). Mortality in vegetarians and nonvegetarians: Detailed findings from a collaborative analysis of 5 prospective studies. American Journal of Clinical Nutrition, 70(3), 516s–24s. academic.oup.com/ajcn/article-abstract/70/3/516s/4714974
432Tonstad, S., Butler, T., Yan, R. and Fraser, G. E. (2009). Type of vegetarian diet, body weight, and prevalence of type 2 diabetes. Diabetes Care, 32(5), 791–6. care.diabetesjournals.org/content/32/5/791
433Davey, G. K., Spencer, E. A., Appleby, P. N., Allen, N. E., Knox, K. H. and Key, T. J. (2003). EPIC–Oxford: Lifestyle characteristics and nutrient intakes in a cohort of 33 883 meat-eaters and 31 546 non meat-eaters in the UK. Public Health Nutrition, 6(3), 259–68.www.ncbi.nlm.nih.gov/pubmed/12740075
434Chang-Claude, J., Hermann, S., Eilber, U. and Steindorf, K. (2005). Lifestyle determinants and mortality in German vegetarians and health-conscious persons: Results of a 21-year follow-up. Cancer Epidemiology and Prevention Biomarkers, 14(4), 963–8. cebp.aacrjournals.org/content/14/4/963
435Alewaeters, K., Clarys, P., Hebbelinck, M., Deriemaeker, P. and Clarys, J. P. (2005). Cross-sectional analysis of BMI and some lifestyle variables in Flemish vegetarians compared with non-vegetarians. Ergonomics, 48(11–14), 1433–44. www.tandfonline.com/doi/abs/10.1080/00140130500101031
436Singh, P. N. et al. (2019). Plant-based diets are associated with lower adiposity levels among Hispanic/Latino adults in the Adventist Multi-ethnic Nutrition (AMEN) Study. Frontiers in Nutrition, 6, 34. www.frontiersin.org/articles/10.3389/fnut.2019.00034
437Matsumoto, S., Beeson, W. L., Shavlik, D. J., Siapco, G., Jaceldo-Siegl, K., Fraser, G. and Knutsen, S. F. (2019). Association between vegetarian diets and cardiovascular risk factors in non-Hispanic white participants of the Adventist Health Study-2. Journal of Nutritional Science, 8, E6. www.cambridge.org/core/journals/journal-of-nutritional-science/article/association-between-vegetarian-diets-and-cardiovascular-risk-factors-in-nonhispanic-white-participants-of-the-adventist-health-study2/D67DF4359BD4354447B5CF1DE91DB662
438Chiu, Y. F. et al. (2015). Cross-sectional and longitudinal comparisons of metabolic profiles between vegetarian and non-vegetarian subjects: A matched cohort study. British Journal of Nutrition, 114(8), 1313–20. www.cambridge.org/core/journals/british-journal-of-nutrition/article/crosssectional-and-longitudinal-comparisons-of-metabolic-profiles-between-vegetarian-and-nonvegetarian-subjects-a-matched-cohort-study/2905C5A7D1CAD779D8D33196A4641CEF
439Huang, R. Y., Huang, C. C., Hu, F. B. and Chavarro, J. E. (2016). Vegetarian diets and weight reduction: A meta-analysis of randomized controlled trials. Journal of General Internal Medicine, 31(1), 109–16.link.springer.com/article/10.1007/s11606-015-3390-7
440Ello-Martin, J. A., Roe, L. S., Ledikwe, J. H., Beach, A. M. and Rolls, B. J. (2007). Dietary energy density in the treatment of obesity: A year-long trial comparing 2 weight-loss diets. American Journal of Clinical Nutrition, 85(6), 1465–77. academic.oup.com/ajcn/article-abstract/85/6/1465/4633000
441US Department of Agriculture and US Department of Health and Human Services. (1980). Nutrition and your health: Dietary guidelines for Americans. Office of Disease Prevention and Health Promotion, US Department of Health and Human Services. health.gov/sites/default/files/2019-10/1980thin.pdf
442Jahns, L., Davis-Shaw, W., Lichtenstein, A. H., Murphy, S. P., Conrad, Z. and Nielsen, F. (2018). The history and future of dietary guidance in America. Advances in Nutrition, 9(2), 136–47. www.ncbi.nlm.nih.gov/pmc/articles/PMC5916427
443Economic Research Service, United States Department of Agriculture. Food Availability (Per Capita) Data System. Department of Agriculture, US Government, Washington, D.C. www.ers.usda.gov/data-products/food-availability-per-capita-data-system
444Ford, E. S. and Dietz, W. H. (2013). Trends in energy intake among adults in the United States: Findings from NHANES. American Journal of Clinical Nutrition, 97(4), 848–53. academic.oup.com/ajcn/article-abstract/97/4/848/4577110
445Briefel, R. R. and Johnson, C. L. (2004). Secular trends in dietary intake in the United States. Annual Review of Nutrition, 24, 401–31. www.annualreviews.org/doi/abs/10.1146/annurev.nutr.23.011702.073349
446Mozaffarian, D. and Ludwig, D. S. (2015). The 2015 US dietary guidelines: Lifting the ban on total dietary fat. JAMA, 313(24), 2421–2. jamanetwork.com/journals/jama/article-abstract/2338262
447Ludwig, D. S., Hu, F. B., Tappy, L. and Brand-Miller, J. (2018). Dietary carbohydrates: Role of quality and quantity in chronic disease. BMJ, 361, k2340.www.bmj.com/content/361/bmj.k2340
448Rizzo, N. S., Jaceldo-Siegl, K., Sabate, J. and Fraser, G. E. (2013). Nutrient profiles of vegetarian and nonvegetarian dietary patterns. Journal of the Academy of Nutrition and Dietetics, 113(12), 1610–19. www.sciencedirect.com/science/article/pii/S2212267213011131
449Reynolds, A., Mann, J., Cummings, J., Winter, N., Mete, E. and Te Morenga, L. (2019). Carbohydrate quality and human health: A series of systematic reviews and meta-analyses. The Lancet, 393(10170), 434–45. www.sciencedirect.com/science/article/pii/S0140673618318099
450Turner‐McGrievy, G. M., Barnard, N. D. and Scialli, A. R. (2007). A two‐year randomized weight loss trial comparing a vegan diet to a more moderate low‐fat diet. Obesity, 15(9), 2276–81.onlinelibrary.wiley.com/doi/abs/10.1038/oby.2007.270
451The New Daily. Australians are among the heaviest drinkers in the world. New Daily. 23 September, 2018. thenewdaily.com.au/life/wellbeing/2018/09/22/australians-among-heaviest-drinkers-world-according-world-health-organisation
452World Health Organization. (2018). Global status report on alcohol and health 2018. World Health Organization, United Nations, Geneva. www.who.int/substance_abuse/publications/global_alcohol_report/gsr_2018/en
453Australian Institute of Health and Welfare. (2020). Alcohol, tobacco & other drugs in Australia. AIHW, Australian Government, Canberra. www.aihw.gov.au/reports/alcohol/alcohol-tobacco-other-drugs-australia/contents/introduction
454Centers for Disease Control and Prevention. (2020). Alcohol and public health: Frequently asked questions. Centers for Disease Control and Prevention, Atlanta. www.cdc.gov/alcohol/faqs.htm
455Cronise, R. J., Sinclair, D. A. and Bremer, A. A. (2017). Oxidative priority, meal frequency, and the energy economy of food and activity: Implications for longevity, obesity, and cardiometabolic disease. Metabolic Syndrome and Related Disorders, 15(1), 6–17.www.liebertpub.com/doi/abs/10.1089/MET.2016.0108
456Christiansen, P., Rose, A., Randall-Smith, L. and Hardman, C. A. (2016). Alcohol’s acute effect on food intake is mediated by inhibitory control impairments. Health Psychology, 35(5), 518.psycnet.apa.org/doiLanding?doi=10.1037%2Fhea0000320
457Cains, S., Blomeley, C., Kollo, M., Rácz, R. and Burdakov, D. (2017). Agrp neuron activity is required for alcohol-induced overeating. Nature Communications, 8(1), 1–8. www.nature.com/articles/ncomms14014
458Turner-McGrievy, G. M., Davidson, C. R., Wingard, E. E., Wilcox, S. and Frongillo, E. A. (2015). Comparative effectiveness of plant-based diets for weight loss: A randomized controlled trial of five different diets. Nutrition, 31(2), 350–8. www.sciencedirect.com/science/article/pii/S0899900714004237
459Wright, N., Wilson, L., Smith, M., Duncan, B. and McHugh, P. (2017). The BROAD study: A randomised controlled trial using a whole food plant-based diet in the community for obesity, ischaemic heart disease or diabetes. Nutrition & Diabetes, 7(3), e256. www.nature.com/articles/nutd20173
460Barnard, N. D. et al. (2020). A Mediterranean diet and low-fat vegan diet to improve body weight and cardiometabolic risk factors: A randomized, cross-over trial. Journal of the American College of Nutrition, 1–13. www.tandfonline.com/doi/full/10.1080/07315724.2020.1869625
461Hruby, A. and Hu, F. B. (2015). The epidemiology of obesity: A big picture. Pharmacoeconomics, 33(7), 673–89.link.springer.com/article/10.1007/s40273-014-0243-x
462Butler, T. L. et al. (2008). Cohort profile: The Adventist Health Study-2 (AHS-2). International Journal of Epidemiology, 37(2), 260–5. www.academia.edu/download/40552306/dym165v1.pdf
463Hales, C. M., Carroll, M. D., Fryar, C. D. and Ogden, C. L. (2017). Prevalence of obesity among adults and youth: United States, 2015–2016. Centers for Disease Control and Prevention, Atlanta. stacks.cdc.gov/view/cdc/49223
464Hall, K. D. and Guo, J. (2017). Obesity energetics: Body weight regulation and the effects of diet composition. Gastroenterology, 152(7), 1718–27. www.sciencedirect.com/science/article/pii/S001650851730152X
465Hall, K. D. (2015). Prescribing low-fat diets: Useless for long-term weight loss. The Lancet Diabetes & Endocrinology, 3(12), 920–1. www.adipositas-stiftung.de/cms/images/stories/pdf/Prescribing_low-fat_diets_-_useless_for_long-term_weight_loss.pdf
466Johnston, B. C. et al. (2014). Comparison of weight loss among named diet programs in overweight and obese adults: A meta-analysis. JAMA, 312(9), 923–33. jamanetwork.com/journals/jama/article-abstract/1900510
467Tobias, D. K., Chen, M., Manson, J. E., Ludwig, D. S., Willett, W. and Hu, F. B. (2015). Effect of low-fat diet interventions versus other diet interventions on long-term weight change in adults: A systematic review and meta-analysis. The Lancet Diabetes & Endocrinology, 3(12), 968–79. www.sciencedirect.com/science/article/pii/S2213858715003678
468Churuangsuk, C., Kherouf, M., Combet, E. and Lean, M. (2018). Low‐carbohydrate diets for overweight and obesity: A systematic review of the systematic reviews. Obesity Reviews, 19(12), 1700–18.onlinelibrary.wiley.com/doi/abs/10.1111/obr.12744
469Gardner, C. D. et al. (2018). Effect of low-fat vs low-carbohydrate diet on 12-month weight loss in overweight adults and the association with genotype pattern or insulin secretion: The DIETFITS randomized clinical trial. JAMA, 319(7), 667–79. jamanetwork.com/journals/jama/article-abstract/2673150
470Hall, K. D. et al. (2021). Effect of a plant-based, low-fat diet versus an animal-based, ketogenic diet on ad libitum energy intake. Nature Medicine, 27, 344–53. www.nature.com/articles/s41591-020-01209-1
471Westerterp, K. R. (2004). Diet induced thermogenesis. Nutrition & Metabolism, 1(1), 1–5. nutritionandmetabolism.biomedcentral.com/articles/10.1186/1743-7075-1-5
472Ritchie, H. and Roser, M. (2019). Meat and Dairy Production: Which countries eat the most meat? Our World in Data.ourworldindata.org/meat-production#which-countries-eat-the-most-meat
473Willcox, D. C., Scapagnini, G. and Willcox, B. J. (2014). Healthy aging diets other than the Mediterranean: A focus on the Okinawan diet. Mechanisms of Ageing and Development, 136, 148–62. www.sciencedirect.com/science/article/pii/S0047637414000037
474Centers for Disease Control and Prevention. (2020). Diabetes: Prediabetes – your chance to prevent type 2 diabetes. Centers for Disease Control and Prevention, Atlanta. www.cdc.gov/diabetes/basics/prediabetes.html
475Bullard, K. M. et al. (2018). Prevalence of diagnosed diabetes in adults by diabetes type – United States, 2016. Morbidity and Mortality Weekly Report, 67(12), 359. www.ncbi.nlm.nih.gov/pmc/articles/pmc5877361
476Diabetes Australia. Diabetes in Australia. Diabetes Australia.www.diabetesaustralia.com.au/about-diabetes/diabetes-in-australia
477Shah, R. (2015). Assessing the risk of diabetes. BMJ, 351, h4525. www.jstor.org/stable/26521721
478Gudala, K., Bansal, D., Schifano, F. and Bhansali, A. (2013). Diabetes mellitus and risk of dementia: A meta‐analysis of prospective observational studies. Journal of Diabetes Investigation, 4(6), 640–50. onlinelibrary.wiley.com/doi/full/10.1111/jdi.12087
479Morris, M. C., Tangney, C. C., Wang, Y., Sacks, F. M., Barnes, L. L., Bennett, D. A. and Aggarwal, N. T. (2015). MIND diet slows cognitive decline with aging. Alzheimer’s & Dementia, 11(9), 1015–22. www.sciencedirect.com/science/article/pii/S1552526015001946
480De Cosmo, S. et al. (2016). Predictors of chronic kidney disease in type 2 diabetes: A longitudinal study from the AMD Annals initiative. Medicine, 95(27), e4007. www.ncbi.nlm.nih.gov/pmc/articles/PMC5058807
481McMacken, M. and Shah, S. (2017). A plant-based diet for the prevention and treatment of type 2 diabetes. Journal of Geriatric Cardiology, 14(5), 342. www.ncbi.nlm.nih.gov/pmc/articles/pmc5466941
482Diabetes Australia. Type 2 diabetes. Diabetes Australia.www.diabetesaustralia.com.au/type-2-diabetes
483Rojas, J., Chávez, M., Olivar, L., Rojas, M., Morillo, J., Mejías, J., Calvo, M. and Bermúdez, V. (2014). Polycystic ovary syndrome, insulin resistance, and obesity: Navigating the pathophysiologic labyrinth. International Journal of Reproductive Medicine, 2014, 719050.www.ncbi.nlm.nih.gov/pmc/articles/PMC4334071
484DeFronzo, R. A., Bonadonna, R. C. and Ferrannini, E. (1992). Pathogenesis of NIDDM: A balanced overview. Diabetes Care, 15(3), 318–68. care.diabetesjournals.org/content/15/3/318
485Pories, W. J. and Dohm, G. L. (2012). Diabetes: Have we got it all wrong? Hyperinsulinism as the culprit: Surgery provides the evidence. Diabetes Care, 35(12), 2438–42. care.diabetesjournals.org/content/35/12/2438
486Centers for Disease Control and Prevention. New CDC report: More than 100 million Americans have diabetes or prediabetes. 18 July 2017. CDC Newsroom.www.cdc.gov/media/releases/2017/p0718-diabetes-report.html
487Diabetes Australia. Pre-diabetes. Diabetes Australia.www.diabetesaustralia.com.au/pre-diabetes
488National Center for Chronic Disease Prevention and Health Promotion. (2020). Diabetes and prediabetes. Centers for Disease Control and Prevention, Atlanta. www.cdc.gov/chronicdisease/resources/publications/factsheets/diabetes-prediabetes.htm
489Diabetes UK. Sugar and diabetes. British Diabetic Association.www.diabetes.org.uk/guide-to-diabetes/enjoy-food/eating-with-diabetes/food-groups/sugar-and-diabetes
490Lee, Y. and Park, K. (2017). Adherence to a vegetarian diet and diabetes risk: A systematic review and meta-analysis of observational studies. Nutrients, 9(6), 603. www.mdpi.com/2072-6643/9/6/603
491Willcox, D. C., Willcox, B. J., Todoriki, H. and Suzuki, M. (2009). The Okinawan diet: Health implications of a low-calorie, nutrient-dense, antioxidant-rich dietary pattern low in glycemic load. Journal of the American College of Nutrition, 28(sup4), 500S–16S. www.tandfonline.com/doi/abs/10.1080/07315724.2009.10718117
492Krssak, M. F. P. K. et al. (1999). Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: A 1H NMR spectroscopy study. Diabetologia, 42(1), 113–16. link.springer.com/article/10.1007/s001250051123
493Perseghin, G. et al. (1999). Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: A 1H-13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents. Diabetes, 48(8), 1600–6.diabetes.diabetesjournals.org/content/48/8/1600
494Shulman, G. I. (2014). Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. New England Journal of Medicine, 371(12), 1131–41. www.nejm.org/doi/full/10.1056/NEJMra1011035
495Imamura, F. et al. (2016). Effects of saturated fat, polyunsaturated fat, monounsaturated fat, and carbohydrate on glucose-insulin homeostasis: A systematic review and meta-analysis of randomised controlled feeding trials. PLOS Medicine, 13(7), e1002087. journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1002087
496Talaei, M., Wang, Y. L., Yuan, J. M., Pan, A. and Koh, W. P. (2017). Meat, dietary heme iron, and risk of type 2 diabetes mellitus: The Singapore Chinese Health Study. American Journal of Epidemiology, 186(7), 824–33.academic.oup.com/aje/article-abstract/186/7/824/3848997
497Orban, E., Schwab, S., Thorand, B. and Huth, C. (2014). Association of iron indices and type 2 diabetes: A meta‐analysis of observational studies. Diabetes/Metabolism Research and Reviews, 30(5), 372–94. onlinelibrary.wiley.com/doi/abs/10.1002/dmrr.2506
498Bao, W., Rong, Y., Rong, S. and Liu, L. (2012). Dietary iron intake, body iron stores, and the risk of type 2 diabetes: A systematic review and meta-analysis. BMC Medicine, 10(1), 119.link.springer.com/article/10.1186/1741-7015-10-119
499Zhao, Z., Li, S., Liu, G., Yan, F., Ma, X., Huang, Z. and Tian, H. (2012). Body iron stores and heme-iron intake in relation to risk of type 2 diabetes: A systematic review and meta-analysis. PLOS One, 7(7), e41641. journals.plos.org/plosone/article?id=10.1371/journal.pone.0041641
4100Malik, V. S., Popkin, B. M., Bray, G. A., Després, J. P., Willett, W. C. and Hu, F. B. (2010). Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: A meta-analysis. Diabetes Care, 33(11), 2477–83.care.diabetesjournals.org/content/33/11/2477
4101Malik, V. S., Popkin, B. M., Bray, G. A., Després, J. P. and Hu, F. B. (2010). Sugar-sweetened beverages, obesity, type 2 diabetes mellitus, and cardiovascular disease risk. Circulation, 121(11), 1356–64. www.ahajournals.org/doi/abs/10.1161/circulationaha.109.876185
4102Tian, S., Xu, Q., Jiang, R., Han, T., Sun, C. and Na, L. (2017). Dietary protein consumption and the risk of type 2 diabetes: A systematic review and meta-analysis of cohort studies. Nutrients, 9(9), 982. www.mdpi.com/2072-6643/9/9/982/htm
4103Uribarri, J. et al. (2015). Dietary advanced glycation end products and their role in health and disease. Advances in Nutrition, 6(4), 461–73. academic.oup.com/advances/article-abstract/6/4/461/4568678
4104Kim, Y., Keogh, J. and Clifton, P. (2015). A review of potential metabolic etiologies of the observed association between red meat consumption and development of type 2 diabetes mellitus. Metabolism, 64(7), 768–79. www.sciencedirect.com/science/article/pii/S0026049515000864
4105Malik, V. S. and Hu, F. B. (2015). Fructose and cardiometabolic health: What the evidence from sugar-sweetened beverages tells us. Journal of the American College of Cardiology, 66(14), 1615–24.www.onlinejacc.org/content/66/14/1615
4106Wang, P. Y., Fang, J. C., Gao, Z. H., Zhang, C. and Xie, S. Y. (2016). Higher intake of fruits, vegetables or their fiber reduces the risk of type 2 diabetes: A meta‐analysis. Journal of Diabetes Investigation, 7(1), 56–69. onlinelibrary.wiley.com/doi/abs/10.1111/jdi.12376
4107Mai, B. H. and Yan, L. J. (2019). The negative and detrimental effects of high fructose on the liver, with special reference to metabolic disorders. Diabetes, Metabolic Syndrome and Obesity: Targets And Therapy, 12, 821–6. www.ncbi.nlm.nih.gov/pmc/articles/PMC6549781
4108Mazidi, M. and Kengne, A. P. (2019). Higher adherence to plant-based diets are associated with lower likelihood of fatty liver. Clinical Nutrition, 38(4), 1672–7. pubmed.ncbi.nlm.nih.gov/30578029
4109Viguiliouk, E. et al. (2015). Effect of replacing animal protein with plant protein on glycemic control in diabetes: A systematic review and meta-analysis of randomized controlled trials. Nutrients, 7(12), 9804–24.www.mdpi.com/2072-6643/7/12/5509
4110Aune, D., Norat, T., Romundstad, P. and Vatten, L. J. (2013). Whole grain and refined grain consumption and the risk of type 2 diabetes: A systematic review and dose-response meta-analysis of cohort studies. European Journal of Epidemiology, 28(11), 845–58.link.springer.com/content/pdf/10.1007/s10654-013-9852-5.pdf
4111Satija, A. et al. (2016). Plant-based dietary patterns and incidence of type 2 diabetes in US men and women: Results from three prospective cohort studies. PLOS Medicine, 13(6), e1002039.journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1002039
4112Schulze, M. B., Schulz, M., Heidemann, C., Schienkiewitz, A., Hoffmann, K. and Boeing, H. (2007). Fiber and magnesium intake and incidence of type 2 diabetes: A prospective study and meta-analysis. Archives of Internal Medicine, 167(9), 956–65. jamanetwork.com/journals/jamainternalmedicine/article-abstract/412391
4113Ley, S. H., Hamdy, O., Mohan, V. and Hu, F. B. (2014). Prevention and management of type 2 diabetes: Dietary components and nutritional strategies. The Lancet, 383(9933), 1999–2007. www.sciencedirect.com/science/article/pii/S0140673614606139
4114Chen, Z. et al. (2018). Plant versus animal based diets and insulin resistance, prediabetes and type 2 diabetes: The Rotterdam Study. European Journal of Epidemiology, 33(9), 883–93.link.springer.com/article/10.1007/s10654-018-0414-8
4115Kahleova, H., Tura, A., Hill, M., Holubkov, R. and Barnard, N. D. (2018). A plant-based dietary intervention improves beta-cell function and insulin resistance in overweight adults: A 16-week randomized clinical trial. Nutrients, 10(2), 189. www.mdpi.com/2072-6643/10/2/189
4116Soare, A. et al. (2016). A 6-month follow-up study of the randomized controlled Ma-Pi macrobiotic dietary intervention (MADIAB trial) in type 2 diabetes. Nutrition & Diabetes, 6(8), e222. www.nature.com/articles/nutd201629
4117Anderson, J. W. and Ward, K. (1979). High-carbohydrate, high-fiber diets for insulin-treated men with diabetes mellitus. American Journal of Clinical Nutrition, 32(11), 2312–21. academic.oup.com/ajcn/article-abstract/32/11/2312/4692116
4118Bueno, N. B., de Melo, I. S. V., de Oliveira, S. L. and da Rocha Ataide, T. (2013). Very-low-carbohydrate ketogenic diet v. low-fat diet for long-term weight loss: A meta-analysis of randomised controlled trials. British Journal of Nutrition, 110(7), 1178–87. www.cambridge.org/core/journals/british-journal-of-nutrition/article/verylowcarbohydrate-ketogenic-diet-v-lowfat-diet-for-longterm-weight-loss-a-metaanalysis-of-randomised-controlled-trials/6FD9F975BAFF1D46F84C8BA9CE860783
4119Rosenbaum, M. et al. (2019). Glucose and lipid homeostasis and inflammation in humans following an isocaloric ketogenic diet. Obesity, 27(6), 971–81. onlinelibrary.wiley.com/doi/abs/10.1002/oby.22468
4120Numao, S., Kawano, H., Endo, N., Yamada, Y., Konishi, M., Takahashi, M. and Sakamoto, S. (2012). Short-term low carbohydrate/high-fat diet intake increases postprandial plasma glucose and glucagon-like peptide-1 levels during an oral glucose tolerance test in healthy men. European Journal of Clinical Nutrition, 66(8), 926–31. www.nature.com/articles/ejcn201258
4121Seidelmann, S. B. et al. (2018). Dietary carbohydrate intake and mortality: A prospective cohort study and meta-analysis. The Lancet Public Health, 3(9), e419–28. www.sciencedirect.com/science/article/pii/S246826671830135X
4122Garber, A. J. et al. (2020). Consensus statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the comprehensive type 2 diabetes management algorithm – 2020 executive summary. Endocrine Practice, 26(1), 107–39.www.endocrinepractice.org/article/S1530-891X(20)35066-7
4123Anderson, J. W., Konz, E. C., Frederich, R. C. and Wood, C. L. (2001). Long-term weight-loss maintenance: A meta-analysis of US studies. American Journal of Clinical Nutrition, 74(5), 579–84.academic.oup.com/ajcn/article-abstract/74/5/579/4737391
4124Cruwys, T., Norwood, R., Chachay, V. S., Ntontis, E. and Sheffield, J. (2020). ‘An important part of who I am’: The predictors of dietary adherence among weight-loss, vegetarian, vegan, paleo, and gluten-free dietary groups. Nutrients, 12(4), 970. www.mdpi.com/2072-6643/12/4/970
51World Health Organization. Cardiovascular diseases (CVDs). WHO Newsroom. 17 May 2017.www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
52Perk, J. et al. (2012). European guidelines on cardiovascular disease prevention in clinical practice (version 2012): The fifth joint task force of the European Society of Cardiology and other societies on cardiovascular disease prevention in clinical practice. Atherosclerosis, 223(1), 1–68. www.sciencedirect.com/science/article/abs/pii/S0021915012002882
53Australian Government Department of Health. (2020). What we’re doing about cardiovascular conditions. Australian Government, Canberra. www.health.gov.au/health-topics/chronic-conditions/what-were-doing-about-chronic-conditions/what-were-doing-about-cardiovascular-conditions
54Benjamin, E. J. et al. (2019). Heart disease and stroke statistics – 2019 update: A report from the American Heart Association. Circulation, 139(10), e56–528. pubmed.ncbi.nlm.nih.gov/30700139
55Mensah, G. A. et al. (2017). Decline in cardiovascular mortality: Possible causes and implications. Circulation Research, 120(2), 366–80. www.ahajournals.org/doi/abs/10.1161/circresaha.116.309115
56Enos, W. F., Holmes, R. H. and Beyer, J. (1953). Coronary disease among United States soldiers killed in action in Korea: Preliminary report. Journal of the American Medical Association, 152(12), 1090–3. jamanetwork.com/journals/jama/article-abstract/286620
57McNamara, J. J., Molot, M. A., Stremple, J. F. and Cutting, R. T. (1971). Coronary artery disease in combat casualties in Vietnam. JAMA, 216(7), 1185–7. jamanetwork.com/journals/jama/article-abstract/336112
58Stary, H. C. (1989). Evolution and progression of atherosclerotic lesions in coronary arteries of children and young adults. Arteriosclerosis, 9(1 Suppl), I19. www.ncbi.nlm.nih.gov/pubmed/2912430
59Berenson, G. S., Srinivasan, S. R., Bao, W., Newman, W. P., Tracy, R. E. and Wattigney, W. A. (1998). Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. New England Journal of Medicine, 338(23), 1650–6. www.nejm.org/doi/full/10.1056/nejm199806043382302
510Strong, J. P. et al. (1999). Prevalence and extent of atherosclerosis in adolescents and young adults: Implications for prevention from the Pathobiological Determinants of Atherosclerosis in Youth Study. JAMA, 281(8), 727–35. jamanetwork.com/journals/jama/article-abstract/188840
511Napoli, C., D’Armiento, F. P., Mancini, F. P., Postiglione, A., Witztum, J. L., Palumbo, G. and Palinski, W. (1997). Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal hypercholesterolemia. Intimal accumulation of low density lipoprotein and its oxidation precede monocyte recruitment into early atherosclerotic lesions. Journal of Clinical Investigation, 100(11), 2680–90. www.jci.org/articles/view/119813
512Mach, F. et al. (2020). 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk: The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). European Heart Journal, 41(1), 111–88. academic.oup.com/eurheartj/article-abstract/41/1/111/5556353
513Linton, M. R. F. et al. (2000). The role of lipids and lipoproteins in atherosclerosis. In Feingold, K.R. et al. (eds). Endotext [Internet]. MDText.com, South Dartmouth. www.ncbi.nlm.nih.gov/sites/books/NBK343489
514Moore, K. J., Sheedy, F. J. and Fisher, E. A. (2013). Macrophages in atherosclerosis: A dynamic balance. Nature Reviews Immunology, 13(10), 709–21. www.nature.com/articles/nri3520
515Rafieian-Kopaei, M., Setorki, M., Doudi, M., Baradaran, A. and Nasri, H. (2014). Atherosclerosis: Process, indicators, risk factors and new hopes. International Journal of Preventive Medicine, 5(8), 927. www.ncbi.nlm.nih.gov/pmc/articles/PMC4258672
516Connor, W. E., Cerqueira, M. T., Connor, R. W., Wallace, R. B., Malinow, M. R. and Casdorph, H. R. (1978). The plasma lipids, lipoproteins, and diet of the Tarahumara Indians of Mexico. American Journal of Clinical Nutrition, 31(7), 1131–42. academic.oup.com/ajcn/article-abstract/31/7/1131/4650360
517Campbell, T. C., Parpia, B. and Chen, J. (1998). Diet, lifestyle, and the etiology of coronary artery disease: The Cornell China study. American Journal of Cardiology, 82(10), 18–21.www.sciencedirect.com/science/article/pii/S0002914998007188
518Willcox, B. J. et al. (2007). Caloric restriction, the traditional Okinawan diet, and healthy aging: The diet of the world’s longest‐lived people and its potential impact on morbidity and life span. Annals of the New York Academy of Sciences, 1114(1), 434–55. s.put.re/edWLkDBZ.pdf
519Kaplan, H. et al. (2017). Coronary atherosclerosis in indigenous South American Tsimane: A cross-sectional cohort study. The Lancet, 389(10080), 1730–9. www.sciencedirect.com/science/article/pii/S0140673617307523
520McMurry, M. P., Cerqueira, M. T., Connor, S. L. and Connor, W. E. (1991). Changes in lipid and lipoprotein levels and body weight in Tarahumara Indians after consumption of an affluent diet. New England Journal of Medicine, 325(24), 1704–8. www.nejm.org/doi/full/10.1056/NEJM199112123252405
521Ference, B. A. et al. (2017). Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. European Heart Journal, 38(32), 2459–72. academic.oup.com/eurheartj/article-abstract/38/32/2459/3745109
522Abdullah, S. M. et al. (2018). Long-term association of low-density lipoprotein cholesterol with cardiovascular mortality in individuals at low 10-year risk of atherosclerotic cardiovascular disease: Results from the Cooper Center Longitudinal Study. Circulation, 138(21), 2315–25. www.ahajournals.org/doi/abs/10.1161/CIRCULATIONAHA.118.034273
523World Health Organization. (2002). The World Health Report 2002: Reducing risks, promoting healthy life. World Health Organization, Geneva. www.who.int/whr/2002/en/whr02_en.pdf
524Ference, B. A. et al. (2012). Effect of long-term exposure to lower low-density lipoprotein cholesterol beginning early in life on the risk of coronary heart disease: A Mendelian randomization analysis. Journal of the American College of Cardiology, 60(25), 2631–9. www.onlinejacc.org/content/60/25/2631
525Silverman, M. G. et al. (2016). Association between lowering LDL-C and cardiovascular risk reduction among different therapeutic interventions: A systematic review and meta-analysis. JAMA, 316(12), 1289–97. jamanetwork.com/journals/jama/article-abstract/2556125
526Centers for Disease Control and Prevention. (2020). Cholesterol: Getting your cholesterol checked. Centers for Disease Control and Prevention, Atlanta. www.cdc.gov/cholesterol/cholesterol_screening.htm
527Von Birgelen, C., Hartmann, M., Mintz, G. S., Baumgart, D., Schmermund, A. and Erbel, R. (2003). Relation between progression and regression of atherosclerotic left main coronary artery disease and serum cholesterol levels as assessed with serial long-term (≥ 12 months) follow-up intravascular ultrasound. Circulation, 108(22), 2757–62. www.ahajournals.org/doi/abs/10.1161/01.CIR.0000103664.47406.49
528Fernández-Friera, L. et al. (2017). Normal LDL-cholesterol levels are associated with subclinical atherosclerosis in the absence of risk factors. Journal of the American College of Cardiology, 70(24), 2979–91. www.jacc.org/doi/full/10.1016/j.jacc.2017.10.024
529Carrington, M. and Stewart, S. (2011). Australia’s cholesterol crossroads: An analysis of 199,331 GP patient cholesterol records: A report of cholesterol levels and management of dyslipidaemia in primary care from 2004 to mid 2009. Baker IDI Heart and Diabetes Institute, Melbourne. www.e-gps.com.au/Assets/Files/Australia_s%20Cholesterol%20Crossroads%20Report_FINAL.pdf
530O’Keefe, J. H., Cordain, L., Harris, W. H., Moe, R. M. and Vogel, R. (2004). Optimal low-density lipoprotein is 50 to 70 mg/dl: Lower is better and physiologically normal. Journal of the American College of Cardiology, 43(11), 2142–6. www.onlinejacc.org/content/43/11/2142
531De Biase, S. G., Fernandes, S. F. C., Gianini, R. J. and Duarte, J. L. G. (2007). Vegetarian diet and cholesterol and triglycerides levels. Arquivos Brasileiros de Cardiologia, 88(1), 35. www.arquivosonline.com.br/english/2007/8801/pdf/i8801006.pdf
532Draper, A., Lewis, J., Malhotra, N. and Wheeler, L. E. (1993). The energy and nutrient intakes of different types of vegetarian: A case for supplements? British Journal of Nutrition, 69(1), 3–19. www.cambridge.org/core/journals/british-journal-of-nutrition/article/energy-and-nutrient-intakes-of-different-types-of-vegetarian-a-case-for-supplements/D2611B2F6D0412714F46FCC23F345945
533Ball, M. J. and Bartlett, M. A. (1999). Dietary intake and iron status of Australian vegetarian women. American Journal of Clinical Nutrition, 70(3), 353–8. academic.oup.com/ajcn/article-abstract/70/3/353/4714844
534Rizzo, N. S., Jaceldo-Siegl, K., Sabate, J. and Fraser, G. E. (2013). Nutrient profiles of vegetarian and nonvegetarian dietary patterns. Journal of the Academy of Nutrition and Dietetics, 113(12), 1610–19. www.sciencedirect.com/science/article/pii/S2212267213011131
535Benatar, J. R. and Stewart, R. A. (2018). Cardiometabolic risk factors in vegans: A meta-analysis of observational studies. PLOS One, 13(12), e0209086. journals.plos.org/plosone/article?id=10.1371/journal.pone.0209086
536Jenkins, D. J. et al. (2005). Direct comparison of a dietary portfolio of cholesterol-lowering foods with a statin in hypercholesterolemic participants. American Journal of Clinical Nutrition, 81(2), 380–7.academic.oup.com/ajcn/article-abstract/81/2/380/4607446
537Gigleux, I. et al. (2007). Comparison of a dietary portfolio diet of cholesterol-lowering foods and a statin on LDL particle size phenotype in hypercholesterolaemic participants. British Journal of Nutrition, 98(6), 1229–36. www.cambridge.org/core/journals/british-journal-of-nutrition/article/comparison-of-a-dietary-portfolio-diet-of-cholesterollowering-foods-and-a-statin-on-ldl-particle-size-phenotype-in-hypercholesterolaemic-participants/A70B71AD80C0A69CAA7811DCC0060D88
538Lemieux, I. et al. (2001). Total cholesterol/HDL cholesterol ratio vs LDL cholesterol/HDL cholesterol ratio as indices of ischemic heart disease risk in men: The Quebec Cardiovascular Study. Archives of Internal Medicine, 161(22), 2685–92. jamanetwork.com/journals/jamainternalmedicine/article-abstract/752318
539Huang, T., Yang, B., Zheng, J., Li, G., Wahlqvist, M. L. and Li, D. (2012). Cardiovascular disease mortality and cancer incidence in vegetarians: A meta-analysis and systematic review. Annals of Nutrition and Metabolism, 60(4), 233–40. www.karger.com/Article/FullText/337301
540Orlich, M. J. et al. (2013). Vegetarian dietary patterns and mortality in Adventist Health Study 2. JAMA Internal Medicine, 173(13), 1230–8. jamanetwork.com/journals/jamainternalmedicine/article-abstract/1710093
541Wang, F., Zheng, J., Yang, B., Jiang, J., Fu, Y. and Li, D. (2015). Effects of vegetarian diets on blood lipids: A systematic review and meta‐analysis of randomized controlled trials. Journal of the American Heart Association, 4(10), e002408. www.ahajournals.org/doi/abs/10.1161/JAHA.115.002408
542Rohatgi, A. et al. (2014). HDL cholesterol efflux capacity and incident cardiovascular events. New England Journal of Medicine, 371(25), 2383–93. www.nejm.org/doi/full/10.1056/NEJMoa1409065
543Nicholls, S. J. et al. (2006). Consumption of saturated fat impairs the anti-inflammatory properties of high-density lipoproteins and endothelial function. Journal of the American College of Cardiology, 48(4), 715–20. www.onlinejacc.org/content/48/4/715
544Clarke, R., Frost, C., Collins, R., Appleby, P. and Peto, R. (1997). Dietary lipids and blood cholesterol: Quantitative meta-analysis of metabolic ward studies. BMJ, 314(7074), 112. www.bmj.com/content/314/7074/112
545Hu, F. B. et al. (1997). Dietary fat intake and the risk of coronary heart disease in women. New England Journal of Medicine, 337(21), 1491–9. www.nejm.org/doi/full/10.1056/nejm199711203372102
546Li, Y. et al. (2015). Saturated fats compared with unsaturated fats and sources of carbohydrates in relation to risk of coronary heart disease: A prospective cohort study. Journal of the American College of Cardiology, 66(14), 1538–48. www.onlinejacc.org/content/66/14/1538
547Hooper, L., Martin, N., Jimoh, O. F., Kirk, C., Foster, E. and Abdelhamid, A. S. (2020). Reduction in saturated fat intake for cardiovascular disease. Cochrane Database of Systematic Reviews, (5), CD011737. www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD011737.pub3
548Mozaffarian, D., Micha, R. and Wallace, S. (2010). Effects on coronary heart disease of increasing polyunsaturated fat in place of saturated fat: A systematic review and meta-analysis of randomized controlled trials. PLOS Med, 7(3), e1000252. journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1000252
549Sacks, F. M. et al. (2017). Dietary fats and cardiovascular disease: A presidential advisory from the American Heart Association. Circulation, 136(3), e1–23. www.ahajournals.org/doi/abs/10.1161/cir.0000000000000510
550Vartiainen, E. et al. (2010). Thirty-five-year trends in cardiovascular risk factors in Finland. International Journal of Epidemiology, 39(2), 504–18. academic.oup.com/ije/article-abstract/39/2/504/679767
551Australian Institute of Health and Welfare. (2018). 4.9 – Diet. In Australia’s Health 2018. Australia’s Health series no. 16. AUS 221. AIHW, Australian Government, Canberra. www.aihw.gov.au/getmedia/b1be8be0-4080-4be7-bf67-d6bec2c5829c/aihw-aus-221-chapter-4-9.pdf.aspx
552World Health Organization. Healthy diet. WHO Newsroom. 29 April 2020.www.who.int/news-room/fact-sheets/detail/healthy-diet
553Wolfe, M. S., Sawyer, J. K., Morgan, T. M., Bullock, B. C. and Rudel, L. L. (1994). Dietary polyunsaturated fat decreases coronary artery atherosclerosis in a pediatric-aged population of African green monkeys. Arteriosclerosis and Thrombosis: A journal of vascular biology, 14(4), 587–97.pubmed.ncbi.nlm.nih.gov/8148357
554Zock, P. L., Blom, W. A., Nettleton, J. A. and Hornstra, G. (2016). Progressing insights into the role of dietary fats in the prevention of cardiovascular disease. Current Cardiology Reports, 18(11), 111. link.springer.com/article/10.1007/s11886-016-0793-y
555Huth, P. J., Fulgoni, V. L., Keast, D. R., Park, K. and Auestad, N. (2013). Major food sources of calories, added sugars, and saturated fat and their contribution to essential nutrient intakes in the US diet: Data from the National Health and Nutrition Examination Survey (2003–2006). Nutrition Journal, 12(1), 116. link.springer.com/article/10.1186/1475-2891-12-116
556Clifton, P. M. and Keogh, J. B. (2017). A systematic review of the effect of dietary saturated and polyunsaturated fat on heart disease. Nutrition, Metabolism and Cardiovascular Diseases, 27(12), 1060–80. www.sciencedirect.com/science/article/pii/S0939475317302375
557Briggs, M. A., Petersen, K. S. and Kris-Etherton, P. M. (2017). Saturated fatty acids and cardiovascular disease: Replacements for saturated fat to reduce cardiovascular risk. Healthcare, 5(2), 29. www.mdpi.com/2227-9032/5/2/29
558Kris-Etherton, P. M., Petersen, K. and Van Horn, L. (2018). Convincing evidence supports reducing saturated fat to decrease cardiovascular disease risk. BMJ Nutrition, Prevention & Health, 1(1), 23. nutrition.bmj.com/content/early/2018/11/15/bmjnph-2018-000009
559Liu, A. G., Ford, N. A., Hu, F. B., Zelman, K. M., Mozaffarian, D. and Kris-Etherton, P. M. (2017). A healthy approach to dietary fats: Understanding the science and taking action to reduce consumer confusion. Nutrition Journal, 16(1), 53. link.springer.com/article/10.1186/s12937-017-0271-4
560de Oliveira Otto, M. C., Mozaffarian, D., Kromhout, D., Bertoni, A. G., Sibley, C. T., Jacobs Jr, D. R. and Nettleton, J. A. (2012). Dietary intake of saturated fat by food source and incident cardiovascular disease: The Multi-Ethnic Study of Atherosclerosis. American Journal of Clinical Nutrition, 96(2), 397–404. academic.oup.com/ajcn/article-abstract/96/2/397/4576928
561Engel, S. and Tholstrup, T. (2015). Butter increased total and LDL cholesterol compared with olive oil but resulted in higher HDL cholesterol compared with a habitual diet. American Journal of Clinical Nutrition, 102(2), 309–15. academic.oup.com/ajcn/article-abstract/102/2/309/4564657
562Brassard, D. et al. (2017). Comparison of the impact of SFAs from cheese and butter on cardiometabolic risk factors: A randomized controlled trial. American Journal of Clinical Nutrition, 105(4), 800–9. academic.oup.com/ajcn/article-abstract/105/4/800/4638053
563Chen, M. et al. (2016). Dairy fat and risk of cardiovascular disease in 3 cohorts of US adults. American Journal of Clinical Nutrition, 104(5), 1209–17. academic.oup.com/ajcn/article-abstract/104/5/1209/4564387
564De Goede, J., Geleijnse, J. M., Ding, E. L. and Soedamah-Muthu, S. S. (2015). Effect of cheese consumption on blood lipids: A systematic review and meta-analysis of randomized controlled trials. Nutrition Reviews, 73(5), 259–75. academic.oup.com/nutritionreviews/article-abstract/73/5/259/1862394
565Al-Shaar, L. et al. (2020). Red meat intake and risk of coronary heart disease among US men: Prospective cohort study. BMJ, 371, m4141. www.bmj.com/content/371/bmj.m4141
566Swaminathan, S. et al. (2021). Associations of cereal grains intake with cardiovascular disease and mortality across 21 countries in Prospective Urban and Rural Epidemiology study: Prospective cohort study. BMJ, 372, m4948. www.bmj.com/content/372/bmj.m4948
567Stanhope, K. L. et al. (2009). Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. Journal of Clinical Investigation, 119(5), 1322–34. www.jci.org/articles/view/37385
568Ferretti, G. et al. (2002). Glycated low density lipoproteins modify platelet properties: A compositional and functional study. Journal of Clinical Endocrinology & Metabolism, 87(5), 2180–4.academic.oup.com/jcem/article-abstract/87/5/2180/2847087
569Chowdhury, R. et al. (2014). Association of dietary, circulating, and supplement fatty acids with coronary risk: A systematic review and meta-analysis. Annals of Internal Medicine, 160(6), 398–406. www.acpjournals.org/doi/abs/10.7326/m13-1788
570Siri-Tarino, P. W., Sun, Q., Hu, F. B. and Krauss, R. M. (2010). Meta-analysis of prospective cohort studies evaluating the association of saturated fat with cardiovascular disease. American Journal of Clinical Nutrition, 91(3), 535–46. academic.oup.com/ajcn/article-abstract/91/3/535/4597110
571De Souza, R. J. et al. (2015). Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: Systematic review and meta-analysis of observational studies. BMJ, 351, h3978. www.bmj.com/content/351/bmj.h3978
572Dehghan, M. et al. (2017). Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): A prospective cohort study. The Lancet, 390(10107), 2050–62. www.sciencedirect.com/science/article/pii/S0140673617322523
573Hill, S. (2021). Saturated fat: Friend or foe? Plant Proof. plantproof.com/saturated-fat-friend-or-foe
574Katan, M. B., Brouwer, I. A., Clarke, R., Geleijnse, J. M. and Mensink, R. P. (2010). Saturated fat and heart disease. American Journal of Clinical Nutrition, 92(2), 459–60. academic.oup.com/ajcn/article-abstract/92/2/459/4597394
575Pedersen, J. et al. (2011). The importance of reducing SFA to limit CHD. British Journal of Nutrition, 106(7), 961–3. www.cambridge.org/core/journals/british-journal-of-nutrition/article/importance-of-reducing-sfa-to-limit-chd/757E6360E441B72E2E96DDAD8DAE3381
576Hong, M. K., Mintz, G. S., Popma, J. J., Kent, K. M., Pichard, A. D., Satler, L. F. and Leon, M. B. (1994). Limitations of angiography for analyzing coronary atherosclerosis progression or regression. Annals of Internal Medicine, 121(5), 348–54. www.acpjournals.org/doi/abs/10.7326/0003-4819-121-5-199409010-00007
577Berry, C. et al. (2007). Comparison of intravascular ultrasound and quantitative coronary angiography for the assessment of coronary artery disease progression. Circulation, 115(14), 1851–7. www.ahajournals.org/doi/full/10.1161/CIRCULATIONAHA.106.655654
578Esselstyn, C. B. (1999). Updating a 12-year experience with arrest and reversal therapy for coronary heart disease (an overdue requiem for palliative cardiology). American Journal of Cardiology, 84(3), 339–41.www.ajconline.org/article/S0002-9149(99)00290-8
579Esselstyn Jr, C. B., Gendy, G., Doyle, J., Golubic, M. and Roizen, M. F. (2014). A way to reverse CAD? Journal of Family Practice, 63(7), 356–64. go.gale.com/ps/i.do?id=GALE%7CA376071870
580Blankenhorn, D. H. et al. (1993). Coronary angiographic changes with lovastatin therapy: The Monitored Atherosclerosis Regression Study (MARS). Annals of Internal Medicine, 119(10), 969–76. www.acpjournals.org/doi/abs/10.7326/0003-4819-119-10-199311150-00002
581Leren, T. P., Hjermann, I., Berg, K., Leren, P., Foss, O. P. and Viksmoen, L. (1988). Effects of lovastatin alone and in combination with cholestyramine on serum lipids and apolipoproteins in heterozygotes for familial hypercholesterolemia. Atherosclerosis, 73(2–3), 135–41. www.sciencedirect.com/science/article/pii/0021915088900342
582Ornish, D. et al. (1990). Can lifestyle changes reverse coronary heart disease? The Lifestyle Heart Trial. The Lancet, 336(8708), 129–33. www.thelancet.com/journals/lancet/article/PII0140-6736(90)91656-U
583Ornish, D. et al. (1998). Intensive lifestyle changes for reversal of coronary heart disease. JAMA, 280(23), 2001–7. pubmed.ncbi.nlm.nih.gov/9863851
584Gupta, S. K. et al. (2011). Regression of coronary atherosclerosis through healthy lifestyle in coronary artery disease patients: Mount Abu Open Heart Trial. Indian Heart Journal, 63(5), 461–9. europepmc.org/article/med/23550427
585Estruch, R. et al. (2018). Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. New England Journal of Medicine, 378(25), e34.www.nejm.org/doi/full/10.1056/NEJMoa1800389
586De Lorgeril, M. et al. (1994). Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease. The Lancet, 343(8911), 1454–9. www.sciencedirect.com/science/article/pii/S0140673694925801
587Lăcătușu, C. M., Grigorescu, E. D., Floria, M., Onofriescu, A. and Mihai, B. M. (2019). The Mediterranean diet: From an environment-driven food culture to an emerging medical prescription. International Journal of Environmental Research and Public Health, 16(6), 942. www.mdpi.com/1660-4601/16/6/942
588Martínez-González, M. A. et al. (2014). A provegetarian food pattern and reduction in total mortality in the Prevención con Dieta Mediterránea (PREDIMED) study. American Journal of Clinical Nutrition, 100(suppl_1), 320S–8S. academic.oup.com/ajcn/article-abstract/100/suppl_1/320S/4576429
589Freeman, A. M. et al. (2017). Trending cardiovascular nutrition controversies. Journal of the American College of Cardiology, 69(9), 1172–87. www.onlinejacc.org/content/69/9/1172
590Hernáez, Á. et al. (2014). Olive oil polyphenols enhance high-density lipoprotein function in humans: A randomized controlled trial. Arteriosclerosis, Thrombosis, and Vascular Biology, 34(9), 2115–19. www.ahajournals.org/doi/10.1161/ATVBAHA.114.303374
591Schwingshackl, L., Christoph, M. and Hoffmann, G. (2015). Effects of olive oil on markers of inflammation and endothelial function: A systematic review and meta-analysis. Nutrients, 7(9), 7651–75. www.mdpi.com/2072-6643/7/9/5356
592Pallazola, V. A. et al. (2019). A clinician’s guide to healthy eating for cardiovascular disease prevention. Mayo Clinic Proceedings: Innovations, quality & outcomes, 3(3), 251–67. www.sciencedirect.com/science/article/pii/S2542454819300724
593Arnett, D. K. et al. (2019). 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation, 140(11), e596–e646. www.ahajournals.org/doi/full/10.1161/CIR.0000000000000678
594Rogers, K. (2016). Trans fat. Encyclopaedia Britannica. www.britannica.com/science/trans-fat
595Dhaka, V., Gulia, N., Ahlawat, K. S. and Khatkar, B. S. (2011). Trans fats – Sources, health risks and alternative approach – A review. Journal of Food Science and Technology, 48(5), 534–41. link.springer.com/article/10.1007/s13197-010-0225-8
596Takeuchi, H. and Sugano, M. (2017). Industrial trans fatty acid and serum cholesterol: The allowable dietary level. Journal of Lipids, 2017, 9751756. www.hindawi.com/journals/jl/2017/9751756/abs
597Mensink, R. P. and Katan, M. B. (1990). Effect of dietary trans fatty acids on high-density and low-density lipoprotein cholesterol levels in healthy subjects. New England Journal of Medicine, 323(7), 439–45. www.nejm.org/doi/full/10.1056/NEJM199008163230703
598Stampfer, W. C. W. M. J., Manson, J. E., Speizer, G. A. C. F. E., Rosner, B. A. and Hennekens, L. A. S. C. H. (1993). Intake of trans fatty acids and risk of coronary heart disease among women. The Lancet, 341, 581–5. www.academia.edu/download/49893637/Intake_of_trans_fatty_acids_and_risk_of_20161026-10086-14amaux.pdf
599Hunter, J. E. (2006). Dietary trans fatty acids: Review of recent human studies and food industry responses. Lipids, 41(11), 967–92. aocs.onlinelibrary.wiley.com/doi/abs/10.1007/s11745-006-5049-y
5100Oomen, C. M., Ocké, M. C., Feskens, E. J., van Erp-Baart, M. A. J., Kok, F. J. and Kromhout, D. (2001). Association between trans fatty acid intake and 10-year risk of coronary heart disease in the Zutphen Elderly Study: A prospective population-based study. The Lancet, 357(9258), 746–51. www.sciencedirect.com/science/article/pii/S0140673600041660
5101Uauy, R. et al. (2009). WHO Scientific Update on trans fatty acids: Summary and conclusions. European Journal of Clinical Nutrition, 63(2), S68–75. www.nature.com/articles/ejcn200915
5102Mensink, R. P., Zock, P. L., Kester, A. D. and Katan, M. B. (2003). Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. American Journal of Clinical Nutrition, 77(5), 1146–55.academic.oup.com/ajcn/article-abstract/77/5/1146/4689813
5103Nishida, C. and Uauy, R. (2009). WHO Scientific Update on health consequences of trans fatty acids: Introduction. European Journal of Clinical Nutrition, 63, S1–S4. www.nature.com/ejcn/journal/v63/n2s/full/ejcn200913a.html
5104World Health Organization. Denmark, trans fat ban pioneer: lessons for other countries. WHO Newsroom. 14 May 2018.www.who.int/news-room/feature-stories/detail/denmark-trans-fat-ban-pioneer-lessons-for-other-countries
5105Brouwer, I. A., Wanders, A. J. and Katan, M. B. (2013). Trans fatty acids and cardiovascular health: Research completed? European Journal of Clinical Nutrition, 67(5), 541–7. www.nature.com/articles/ejcn201343
5106Wu, J., Downs, S., Catterall, E., Bloem, M., Zheng, M., Veerman, L., Barendregt, J. and Thomas, B. (2017). Levels of trans fats in the food supply and population consumption in Australia: An Expert Commentary rapid review brokered by the Sax Institute for The National Heart Foundation of Australia. www.heartfoundation.org.au/getmedia/e27233c8-73d5-4c37-9416-ad7592af593c/Expert-Commentary-Levels-of-trans-fats-in-the-food-supply-and-consumption-in-Australia.pdf
5107Vincent, M. J., Allen, B., Palacios, O. M., Haber, L. T. and Maki, K. C. (2019). Meta-regression analysis of the effects of dietary cholesterol intake on LDL and HDL cholesterol. American Journal of Clinical Nutrition, 109(1), 7–16. academic.oup.com/ajcn/article-abstract/109/1/7/5266898
5108Rouhani, M. H., Rashidi-Pourfard, N., Salehi-Abargouei, A., Karimi, M. and Haghighatdoost, F. (2018). Effects of egg consumption on blood lipids: A systematic review and meta-analysis of randomized clinical trials. Journal of the American College of Nutrition, 37(2), 99–110. www.tandfonline.com/doi/abs/10.1080/07315724.2017.1366878
5109Barnard, N. D., Long, M. B., Ferguson, J. M., Flores, R. and Kahleova, H. (2019). Industry funding and cholesterol research: A systematic review. American Journal of Lifestyle Medicine, 1559827619892198. journals.sagepub.com/doi/abs/10.1177/1559827619892198
5110Hopkins, P. N. (1992). Effects of dietary cholesterol on serum cholesterol: A meta-analysis and review. American Journal of Clinical Nutrition, 55(6), 1060–70. academic.oup.com/ajcn/article-abstract/55/6/1060/4715430
5111Khalighi Sikaroudi, M., Soltani, S., Kolahdouz‐Mohammadi, R., Clayton, Z. S., Fernandez, M. L., Varse, F. and Shidfar, F. (2020). The responses of different dosages of egg consumption on blood lipid profile: An updated systematic review and meta‐analysis of randomized clinical trials. Journal of Food Biochemistry, e13263. onlinelibrary.wiley.com/doi/abs/10.1111/jfbc.13263
5112Fielding, C. J., Havel, R. J., Todd, K. M., Yeo, K. E., Schloetter, M. C., Weinberg, V. and Frost, P. H. (1995). Effects of dietary cholesterol and fat saturation on plasma lipoproteins in an ethnically diverse population of healthy young men. Journal of Clinical Investigation, 95(2), 611–18. www.jci.org/articles/view/117705
5113Carson, J. A. S. et al. (2020). Dietary cholesterol and cardiovascular risk: A science advisory from the American Heart Association. Circulation, 141(3), e39–53. www.ahajournals.org/doi/abs/10.1161/CIR.0000000000000743
5114Xu, Z., McClure, S. T. and Appel, L. J. (2018). Dietary cholesterol intake and sources among US adults: Results from National Health and Nutrition Examination Surveys (NHANES), 2001–2014. Nutrients, 10(6), 771. www.mdpi.com/2072-6643/10/6/771
5115Bergeron, N., Chiu, S., Williams, P. T., King, S. M. and Krauss, R. M. (2019). Effects of red meat, white meat, and nonmeat protein sources on atherogenic lipoprotein measures in the context of low compared with high saturated fat intake: A randomized controlled trial. American Journal of Clinical Nutrition, 110(1), 24–33. academic.oup.com/ajcn/article-abstract/110/1/24/5494812
5116Key, T. J. et al. (2019). Consumption of meat, fish, dairy products, and eggs and risk of ischemic heart disease: A prospective study of 7198 incident cases among 409 885 participants in the Pan-European EPIC Cohort. Circulation, 139(25), 2835–45. www.ahajournals.org/doi/abs/10.1161/CIRCULATIONAHA.118.038813
5117U.S. Department of Agriculture and U.S. Department of Health and Human Services. (2020). Dietary Guidelines for Americans, 2020–2025. 9th Edition. www.dietaryguidelines.gov/sites/default/files/2020-12/Dietary_Guidelines_for_Americans_2020-2025.pdf
5118Centers for Disease Control and Prevention. (2020). High cholesterol facts. Centers for Disease Control and Prevention, Atlanta. www.cdc.gov/cholesterol/facts.htm
5119Peng, Y. and Wang, Z. (2018). Cardiovascular health status among Australian adults. Clinical Epidemiology, 10, 167. www.ncbi.nlm.nih.gov/pmc/articles/PMC5789041
5120Flather, M. (2010). Efficacy and safety of more intensive lowering of LDL cholesterol: A meta-analysis of data from 170,000 participants in 26 randomised trials. The Lancet, 376(9753), 1670–81. ueaeprints.uea.ac.uk/id/eprint/57047
5121Key, T. J. et al. (1999). Mortality in vegetarians and nonvegetarians: Detailed findings from a collaborative analysis of 5 prospective studies. American Journal of Clinical Nutrition, 70(3), 516s–24s.academic.oup.com/ajcn/article-abstract/70/3/516s/4714974
5122Centers for Disease Control and Prevention, Division for Heart Disease and Stroke Prevention. (2020). Types of stroke. Centers for Disease Control and Prevention, Atlanta. www.cdc.gov/stroke/types_of_stroke.htm
5123American Heart Association. (2017). What is cardiovascular disease? American Heart Association.www.heart.org/en/health-topics/consumer-healthcare/what-is-cardiovascular-disease
5124Chiu, T. H., Chang, H. R., Wang, L. Y., Chang, C. C., Lin, M. N. and Lin, C. L. (2020). Vegetarian diet and incidence of total, ischemic, and hemorrhagic stroke in 2 cohorts in Taiwan. Neurology, 94(11), e1112–21.n.neurology.org/content/94/11/e1112
5125Pettersen, B. J., Anousheh, R., Fan, J., Jaceldo-Siegl, K. and Fraser, G. E. (2012). Vegetarian diets and blood pressure among white subjects: Results from the Adventist Health Study-2 (AHS-2). Public Health Nutrition, 15(10), 1909–16. www.cambridge.org/core/journals/public-health-nutrition/article/vegetarian-diets-and-blood-pressure-among-white-subjects-results-from-the-adventist-health-study2-ahs2/428A8F6A59D3433B1A87B7B0D1F3FD28
5126Appleby, P. N., Davey, G. K. and Key, T. J. (2002). Hypertension and blood pressure among meat eaters, fish eaters, vegetarians and vegans in EPIC–Oxford. Public Health Nutrition, 5(5), 645–54. www.cambridge.org/core/journals/public-health-nutrition/article/hypertension-and-blood-pressure-among-meat-eaters-fish-eaters-vegetarians-and-vegans-in-epicoxford/678E54EF633FD623EF778BE1BA743C6A
5127Landi, F. et al. (2018). Body mass index is strongly associated with hypertension: Results from the Longevity Check-up 7+ Study. Nutrients, 10(12), 1976. www.mdpi.com/2072-6643/10/12/1976
5128Rouse, I., Armstrong, B., Beilin, L. and Vandongen, R. (1983). Blood-pressure-lowering effect of a vegetarian diet: Controlled trial in normotensive subjects. The Lancet, 321(8314–15), 5-10. www.sciencedirect.com/science/article/pii/S014067368391557X
5129Jovanovski, E. et al. (2015). Effect of spinach, a high dietary nitrate source, on arterial stiffness and related hemodynamic measures: A randomized, controlled trial in healthy adults. Clinical Nutrition Research, 4(3), 160–7. www.ncbi.nlm.nih.gov/pmc/articles/pmc4525132
5130Borgi, L., Curhan, G. C., Willett, W. C., Hu, F. B., Satija, A. and Forman, J. P. (2015). Long-term intake of animal flesh and risk of developing hypertension in three prospective cohort studies. Journal of Hypertension, 33(11), 2231. www.ncbi.nlm.nih.gov/pmc/articles/PMC4797063
5131Wang, L., Manson, J. E., Buring, J. E. and Sesso, H. D. (2008). Meat intake and the risk of hypertension in middle-aged and older women. Journal of Hypertension, 26(2), 215–22. journals.lww.com/jhypertension/Fulltext/2008/02000/Meat_intake_and_the_risk_of_hypertension_in.12.aspx
5132Miura, K., Greenland, P., Stamler, J., Liu, K., Daviglus, M. L. and Nakagawa, H. (2004). Relation of vegetable, fruit, and meat intake to 7-year blood pressure change in middle-aged men: The Chicago Western Electric Study. American Journal of Epidemiology, 159(6), 572–80. academic.oup.com/aje/article-abstract/159/6/572/147760
5133Steffen, L. M. et al. (2005). Associations of plant food, dairy product, and meat intakes with 15-y incidence of elevated blood pressure in young black and white adults: The Coronary Artery Risk Development in Young Adults (CARDIA) Study. American Journal of Clinical Nutrition, 82(6), 1169–77. academic.oup.com/ajcn/article-abstract/82/6/1169/4648772
5134Lelong, H. et al. (2017). Individual and combined effects of dietary factors on risk of incident hypertension: Prospective analysis from the NutriNet-Santé cohort. Hypertension, 70(4), 712–20. www.ahajournals.org/doi/abs/10.1161/HYPERTENSIONAHA.117.09622
5135Yokoyama, Y. et al. (2014). Vegetarian diets and blood pressure: A meta-analysis. JAMA Internal Medicine, 174(4), 577–87. jamanetwork.com/journals/jamainternalmedicine/article-abstract/1832195
5136Cook, N. R., Cohen, J., Hebert, P. R., Taylor, J. O. and Hennekens, C. H. (1995). Implications of small reductions in diastolic blood pressure for primary prevention. Archives of Internal Medicine, 155(7), 701–9. jamanetwork.com/journals/jamainternalmedicine/article-abstract/620326
5137Sacks, F. M. et al. (1995). Rationale and design of the Dietary Approaches to Stop Hypertension trial (DASH): A multicenter controlled-feeding study of dietary patterns to lower blood pressure. Annals of Epidemiology, 5(2), 108–18. www.sciencedirect.com/science/article/pii/104727979400055X
5138Appel, L. J. et al. (1997). A clinical trial of the effects of dietary patterns on blood pressure. New England Journal of Medicine, 336(16), 1117–24. www.nejm.org/doi/full/10.1056/NEJM199704173361601
5139Berkow, S. E. and Barnard, N. D. (2005). Blood pressure regulation and vegetarian diets. Nutrition Reviews, 63(1), 1–8. academic.oup.com/nutritionreviews/article-abstract/63/1/1/1921496
5140Haider, L. M., Schwingshackl, L., Hoffmann, G. and Ekmekcioglu, C. (2018). The effect of vegetarian diets on iron status in adults: A systematic review and meta-analysis. Critical Reviews in Food Science and Nutrition, 58(8), 1359–74. www.tandfonline.com/doi/abs/10.1080/10408398.2016.1259210
5141Johnson-Wimbley, T. D. and Graham, D. Y. (2011). Diagnosis and management of iron deficiency anemia in the 21st century. Therapeutic Advances in Gastroenterology, 4(3), 177–84. journals.sagepub.com/doi/abs/10.1177/1756283X11398736
5142Hurrell, R. and Egli, I. (2010). Iron bioavailability and dietary reference values. American Journal of Clinical Nutrition, 91(5), 1461S–7S.academic.oup.com/ajcn/article-abstract/91/5/1461S/4597424
5143Cook, J. D. (1990). Adaptation in iron metabolism. American Journal of Clinical Nutrition, 51(2), 301–8. academic.oup.com/ajcn/article-abstract/51/2/301/4695161
5144De Valk, B. and Marx, J. J. M. (1999). Iron, atherosclerosis, and ischemic heart disease. Archives of Internal Medicine, 159(14), 1542–8. jamanetwork.com/journals/jamainternalmedicine/article-abstract/485095
5145Fang, X. et al. (2015). Dietary intake of heme iron and risk of cardiovascular disease: A dose-response meta-analysis of prospective cohort studies. Nutrition, Metabolism and Cardiovascular Diseases, 25(1), 24–35. www.sciencedirect.com/science/article/pii/S0939475314002889
5146Cross, A. J., Harnly, J. M., Ferrucci, L. M., Risch, A., Mayne, S. T. and Sinha, R. (2012). Developing a heme iron database for meats according to meat type, cooking method and doneness level. Food and Nutrition Sciences, 3(7), 905. www.ncbi.nlm.nih.gov/pmc/articles/PMC3583546
5147Cronometer: Track your calories, exercise, biometrics and health data. cronometer.com
5148Naghshi, S., Sadeghi, O., Willett, W. C. and Esmaillzadeh, A. (2020). Dietary intake of total, animal, and plant proteins and risk of all cause, cardiovascular, and cancer mortality: Systematic review and dose-response meta-analysis of prospective cohort studies. BMJ, 370, m2412. www.bmj.com/content/370/bmj.m2412
5149Chen, Z. et al. (2020). Dietary protein intake and all-cause and cause-specific mortality: Results from the Rotterdam Study and a meta-analysis of prospective cohort studies. European Journal of Epidemiology, 35(5), 411–29. link.springer.com/article/10.1007/s10654-020-00607-6
5150Song, M., Fung, T. T., Hu, F. B., Willett, W. C., Longo, V. D., Chan, A. T. and Giovannucci, E. L. (2016). Association of animal and plant protein intake with all-cause and cause-specific mortality. JAMA Internal Medicine, 176(10), 1453–63. jamanetwork.com/journals/jamainternalmedicine/article-abstract/2540540
5151Tharrey, M., Mariotti, F., Mashchak, A., Barbillon, P., Delattre, M. and Fraser, G. E. (2018). Patterns of plant and animal protein intake are strongly associated with cardiovascular mortality: the Adventist Health Study-2 cohort. International Journal of Epidemiology, 47(5), 1603–12.academic.oup.com/ije/article-abstract/47/5/1603/4924399
5152Budhathoki, S. et al. (2019). Association of animal and plant protein intake with all-cause and cause-specific mortality in a Japanese cohort. JAMA Internal Medicine, 179(11), 1509–18. jamanetwork.com/journals/jamainternalmedicine/article-abstract/2748453
5153Huang, J., Liao, L. M., Weinstein, S. J., Sinha, R., Graubard, B. I. and Albanes, D. (2020). Association between plant and animal protein intake and overall and cause-specific mortality. JAMA Internal Medicine, 180(9), 1173–84. jamanetwork.com/journals/jamainternalmedicine/article-abstract/2768358
5154Kelemen, L. E., Kushi, L. H., Jacobs Jr, D. R. and Cerhan, J. R. (2005). Associations of dietary protein with disease and mortality in a prospective study of postmenopausal women. American Journal of Epidemiology, 161(3), 239–49. academic.oup.com/aje/article-abstract/161/3/239/127005
5155Zhang, X. et al. (2020). High-protein diets increase cardiovascular risk by activating macrophage mTOR to suppress mitophagy. Nature Metabolism, 2(1), 110–25. www.nature.com/articles/s42255-019-0162-4
5156Szeto, Y. T., Kwok, T. C. and Benzie, I. F. (2004). Effects of a long-term vegetarian diet on biomarkers of antioxidant status and cardiovascular disease risk. Nutrition, 20(10), 863–6. www.sciencedirect.com/science/article/pii/S0899900704001674
5157Rauma, A. L. and Mykkänen, H. (2000). Antioxidant status in vegetarians versus omnivores. Nutrition, 16(2), 111–19. www.sciencedirect.com/science/article/pii/S0899900799002671
5158Haldar, S., Rowland, I. R., Barnett, Y. A., Bradbury, I., Robson, P. J., Powell, J. and Fletcher, J. (2007). Influence of habitual diet on antioxidant status: A study in a population of vegetarians and omnivores. European Journal of Clinical Nutrition, 61(8), 1011–22. www.nature.com/articles/1602615
5159Kim, M. K., Cho, S. W. and Park, Y. K. (2012). Long-term vegetarians have low oxidative stress, body fat, and cholesterol levels. Nutrition Research and Practice, 6(2), 155–61. www.ncbi.nlm.nih.gov/pmc/articles/PMC3349038
5160Waldmann, A., Koschizke, J. W., Leitzmann, C. and Hahn, A. (2005). Dietary intakes and blood concentrations of antioxidant vitamins in German vegans. International Journal for Vitamin and Nutrition Research, 75(1), 28–36. econtent.hogrefe.com/doi/abs/10.1024/0300-9831.75.1.28
5161Nagyová, A., Kudláčková, M., Grančičová, E. and Magálová, T. (1998). LDL oxidizability and antioxidative status of plasma in vegetarians. Annals of Nutrition and Metabolism, 42(6), 328–32. www.karger.com/Article/Abstract/12752
5162Leermakers, E. T. et al. (2016). The effects of lutein on cardiometabolic health across the life course: a systematic review and meta-analysis, 2. American Journal of Clinical Nutrition, 103(2), 481–94. academic.oup.com/ajcn/article-abstract/103/2/481/4564739
5163Schulz, A. J., Mentz, G. B., Sampson, N. R., Dvonch, J. T., Reyes, A. G. and Izumi, B. (2015). Effects of particulate matter and antioxidant dietary intake on blood pressure. American Journal of Public Health, 105(6), 1254–61. ajph.aphapublications.org/doi/abs/10.2105/AJPH.2014.302176
5164Du, Y., Xu, X., Chu, M., Guo, Y. and Wang, J. (2016). Air particulate matter and cardiovascular disease: The epidemiological, biomedical and clinical evidence. Journal of Thoracic Disease, 8(1), E8. www.ncbi.nlm.nih.gov/pmc/articles/PMC4740122
5165National Health and Medical Research Council, Australian Government Department of Health and Ageing, New Zealand Ministry of Health. (2006). Nutrient Reference Values for Australia and New Zealand. National Health and Medical Research Council, Canberra. www.nrv.gov.au
5166Fayet-Moore, F., Cassettari, T., Tuck, K., McConnell, A. and Petocz, P. (2018). Dietary fibre intake in Australia. Paper I: Associations with demographic, socio-economic, and anthropometric factors. Nutrients, 10(5), 599. www.mdpi.com/2072-6643/10/5/599
5167King, D. E., Mainous III, A. G. and Lambourne, C. A. (2012). Trends in dietary fiber intake in the United States, 1999–2008. Journal of the Academy of Nutrition and Dietetics, 112(5), 642–8. www.sciencedirect.com/science/article/pii/S2212267212001311
5168Liu, L., Wang, S. and Liu, J. (2015). Fiber consumption and all‐cause, cardiovascular, and cancer mortalities: A systematic review and meta‐analysis of cohort studies. Molecular Nutrition & Food Research, 59(1), 139–46. onlinelibrary.wiley.com/doi/abs/10.1002/mnfr.201400449
5169Hartley, L., May, M. D., Loveman, E., Colquitt, J. L. and Rees, K. (2016). Dietary fibre for the primary prevention of cardiovascular disease. Cochrane Database of Systematic Reviews, (1), CD011472. www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD011472.pub2
5170Jayalath, V. H. et al. (2014). Effect of dietary pulses on blood pressure: A systematic review and meta-analysis of controlled feeding trials. American Journal of Hypertension, 27(1), 56–64. academic.oup.com/ajh/article-abstract/27/1/56/142475
5171Grosso, G. et al. (2017). A comprehensive meta-analysis on evidence of Mediterranean diet and cardiovascular disease: Are individual components equal? Critical Reviews in Food Science and Nutrition, 57(15), 3218–32. www.tandfonline.com/doi/abs/10.1080/10408398.2015.1107021
5172Dinu, M., Abbate, R., Gensini, G. F., Casini, A. and Sofi, F. (2017). Vegetarian, vegan diets and multiple health outcomes: A systematic review with meta-analysis of observational studies. Critical Reviews in Food Science and Nutrition, 57(17), 3640–9. www.tandfonline.com/doi/abs/10.1080/10408398.2016.1138447
61World Health Organization. Cancer. WHO Newsroom. 12 September 2018.https://www.who.int/news-room/fact-sheets/detail/cancer
62Anand, P. et al. (2008). Cancer is a preventable disease that requires major lifestyle changes. Pharmaceutical Research, 25(9), 2097–116. link.springer.com/article/10.1007/s11095-008-9661-9
63Willett, W. C. (2000). Diet and cancer. The Oncologist, 5(5), 393–404. www.direct-ms.org/wp-content/uploads/2018/01/Willett-diet-and-cancer.pdf
64World Cancer Research Fund and American Institute for Cancer Research. (2018). Diet, Nutrition, Physical Activity and Cancer: A Global Perspective: A summary of the Third Expert Report. www.wcrf.org/sites/default/files/Summary-of-Third-Expert-Report-2018.pdf
65Australian Institute of Health and Welfare. (2018). Cancer in Australia: Actual incidence data from 1982 to 2013 and mortality data from 1982 to 2014 with projections to 2017. Asia‐Pacific Journal of Clinical Oncology, 14(1), 5–15. onlinelibrary.wiley.com/doi/abs/10.1111/ajco.12761
66Cancer Australia. Diet. Cancer Australia, Australian Government, Canberra. canceraustralia.gov.au/publications-and-resources/position-statements/lifestyle-risk-factors-and-primary-prevention-cancer/lifestyle-risk-factors/diet
67Whitnall, T. and Pitts, N. (2020). Meat Consumption: Analysis of global meat consumption trends. Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES), Australian Government, Canberra. www.agriculture.gov.au/abares/research-topics/agricultural-commodities/mar-2019/meat-consumption
68WHO Team. Cancer: Carcinogenicity of the consumption of red meat and processed meat. WHO Newsroom. 26 October 2015.www.who.int/news-room/q-a-detail/cancer-carcinogenicity-of-the-consumption-of-red-meat-and-processed-meat
69IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. (2018). Red meat and processed meat: Volume 114 – IARC Monographs on the Evaluate. World Health Organization, Geneva; International Agency for Research on Cancer, Lyon. monographs.iarc.fr/wp-content/uploads/2018/06/mono114.pdf
610World Cancer Research Fund and American Institute for Cancer Research. (2018). Limit red and processed meat. World Cancer Research Fund International.www.wcrf.org/dietandcancer/recommendations/limit-red-processed-meat
611Singh, P. N. and Fraser, G. E. (1998). Dietary risk factors for colon cancer in a low-risk population. American Journal of Epidemiology, 148(8), 761–74. academic.oup.com/aje/article-abstract/148/8/761/69260
612Chan, D. S., Lau, R., Aune, D., Vieira, R., Greenwood, D. C., Kampman, E. and Norat, T. (2011). Red and processed meat and colorectal cancer incidence: Meta-analysis of prospective studies. PLOS One, 6(6), e20456. journals.plos.org/plosone/article?id=10.1371/journal.pone.0020456
613Oba, S. et al. (2006). The relationship between the consumption of meat, fat, and coffee and the risk of colon cancer: A prospective study in Japan. Cancer Letters, 244(2), 260–7. www.sciencedirect.com/science/article/pii/S0304383506000097
614Norat, T. et al. (2005). Meat, fish, and colorectal cancer risk: The European Prospective Investigation into Cancer and Nutrition. Journal of the National Cancer Institute, 97(12), 906–16. academic.oup.com/jnci/article-abstract/97/12/906/2544064
615English, D. R., MacInnis, R. J., Hodge, A. M., Hopper, J. L., Haydon, A. M. and Giles, G. G. (2004). Red meat, chicken, and fish consumption and risk of colorectal cancer. Cancer Epidemiology and Prevention Biomarkers, 13(9), 1509–14. cebp.aacrjournals.org/content/13/9/1509
616Larsson, S. C., Rafter, J., Holmberg, L., Bergkvist, L. and Wolk, A. (2005). Red meat consumption and risk of cancers of the proximal colon, distal colon and rectum: The Swedish Mammography Cohort. International Journal of Cancer, 113(5), 829–34. onlinelibrary.wiley.com/doi/abs/10.1002/ijc.20658
617Larsson, S. C. and Orsini, N. (2014). Red meat and processed meat consumption and all-cause mortality: A meta-analysis. American Journal of Epidemiology, 179(3), 282–9. academic.oup.com/aje/article-abstract/179/3/282/103471
618Zheng, Y. et al. (2019). Association of changes in red meat consumption with total and cause specific mortality among US women and men: Two prospective cohort studies. BMJ, 365, l2110. www.bmj.com/content/365/bmj.l2110
619Cancer Council. Types of cancer: Bowel cancer. Cancer Council Australia.www.cancer.org.au/cancer-information/types-of-cancer/bowel-cancer
620Centers for Disease Control and Prevention. Colorectal cancer statistics. Centers for Disease Control and Prevention, Atlanta. www.cdc.gov/cancer/colorectal/statistics/index.htm
621Bastide, N. M., Pierre, F. H. and Corpet, D. E. (2011). Heme iron from meat and risk of colorectal cancer: A meta-analysis and a review of the mechanisms involved. Cancer Prevention Research, 4(2), 177–84. cancerpreventionresearch.aacrjournals.org/content/4/2/177
622Fonseca-Nunes, A., Jakszyn, P. and Agudo, A. (2014). Iron and cancer risk – A systematic review and meta-analysis of the epidemiological evidence. Cancer Epidemiology and Prevention Biomarkers, 23(1), 12–31. cebp.aacrjournals.org/content/23/1/12
623Joosen, A. M. et al. (2009). Effect of processed and red meat on endogenous nitrosation and DNA damage. Carcinogenesis, 30(8), 1402–7. academic.oup.com/carcin/article-abstract/30/8/1402/2476991
624IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. (2010). Ingested nitrate and nitrite, and cyanobacterial peptide toxins. International Agency for Research on Cancer, Lyon. (IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 94.) www.ncbi.nlm.nih.gov/books/NBK326544
625Tannenbaum, S. R. (1989). Preventive action of vitamin C on nitrosamine formation. International Journal for Vitamin and Nutrition Research, Supplement, 30, 109–13. europepmc.org/article/med/2507690
626Ito, N. and Hirose, M. (1989). Antioxidants – Carcinogenic and chemopreventive properties. Advances in Cancer Research, 53, 247–302. www.sciencedirect.com/science/article/pii/S0065230X08602833
627Hord, N. G., Tang, Y. and Bryan, N. S. (2009). Food sources of nitrates and nitrites: The physiologic context for potential health benefits. American Journal of Clinical Nutrition, 90(1), 1–10. academic.oup.com/ajcn/article-abstract/90/1/1/4596750
628Lu, W., Chen, H., Niu, Y., Wu, H., Xia, D. and Wu, Y. (2016). Dairy products intake and cancer mortality risk: A meta-analysis of 11 population-based cohort studies. Nutrition Journal, 15(1), 91. link.springer.com/article/10.1186/s12937-016-0210-9
629Aune, D. et al. (2015). Dairy products, calcium, and prostate cancer risk: A systematic review and meta-analysis of cohort studies. American Journal of Clinical Nutrition, 101(1), 87–117.academic.oup.com/ajcn/article-abstract/101/1/87/4564339
630Harrison, S. et al. (2017). Does milk intake promote prostate cancer initiation or progression via effects on insulin-like growth factors (IGFs)? A systematic review and meta-analysis. Cancer Causes & Control, 28(6), 497–528. link.springer.com/article/10.1007/s10552-017-0883-1
631Jeyaraman, M. M. et al. (2019). Dairy product consumption and development of cancer: An overview of reviews. BMJ Open, 9(1), e023625. bmjopen.bmj.com/content/9/1/e023625
632World Cancer Research Fund and American Institute for Cancer Research. (2018). Continuous Update Project Expert Report 2018. Meat, fish and dairy products and the risk of cancer. www.wcrf.org/sites/default/files/Meat-Fish-and-Dairy-products.pdf
633Philippou, A. and Armakolas, A. (2013). Evidence for the possible biological significance of the IGF-1 gene alternative splicing in prostate cancer. Frontiers in Endocrinology, 4, 31. www.frontiersin.org/articles/10.3389/fendo.2013.00031
634Ma, J., Giovannucci, E., Pollak, M., Chan, J. M., Gaziano, J. M., Willett, W. and Stampfer, M. J. (2001). Milk intake, circulating levels of insulin-like growth factor-I, and risk of colorectal cancer in men. Journal of the National Cancer Institute, 93(17), 1330–6. academic.oup.com/jnci/article-abstract/93/17/1330/2519487
635Travis, R. C. et al. (2016). A meta-analysis of individual participant data reveals an association between circulating levels of IGF-I and prostate cancer risk. Cancer Research, 76(8), 2288–2300. cancerres.aacrjournals.org/content/76/8/2288
636Qin, L. Q., He, K. and Xu, J. Y. (2009). Milk consumption and circulating insulin-like growth factor-I level: A systematic literature review. International Journal of Food Sciences and Nutrition, 60(sup7), 330–40. www.tandfonline.com/doi/abs/10.1080/09637480903150114
637Allen, N. E., Appleby, P. N., Davey, G. K. and Key, T. J. (2000). Hormones and diet: Low insulin-like growth factor-I but normal bioavailable androgens in vegan men. British Journal of Cancer, 83(1), 95–7.www.nature.com/articles/6691152
638Penso, L., Touvier, M., Deschasaux, M., Hercberg, S., Ezzedine, K. and Sbidian, E. (2020). Association between adult acne and dietary behaviors: Findings from the NutriNet-Santé Prospective Cohort Study. JAMA Dermatology,156(8), 854–62. jamanetwork.com/journals/jamadermatology/article-abstract/2767075
639Ben‐Amitai, D. and Laron, Z. (2011). Effect of insulin‐like growth factor‐1 deficiency or administration on the occurrence of acne. Journal of the European Academy of Dermatology and Venereology, 25(8), 950–4. onlinelibrary.wiley.com/doi/abs/10.1111/j.1468-3083.2010.03896.x
640World Cancer Research Fund and American Institute for Cancer Research. (2018). Colorectal cancer. World Cancer Research Fund International.www.wcrf.org/dietandcancer/colorectal-cancer
641World Cancer Research Fund and American Institute for Cancer Research. (2018). Breast cancer. World Cancer Research Fund International.www.wcrf.org/dietandcancer/breast-cancer
642Yang, W. et al. (2018). Calcium intake and risk of colorectal cancer according to expression status of calcium-sensing receptor (CASR). Gut, 67(8), 1475–83. gut.bmj.com/content/67/8/1475
643Willett, W. C. and Ludwig, D. S. (2020). Milk and health. New England Journal of Medicine, 382(7), 644–54. www.nejm.org/doi/full/10.1056/NEJMra1903547
644The Nutrition Source. (2017). PURE study makes headlines, but the conclusions are misleading. Harvard T.H. Chan School of Public Health. www.hsph.harvard.edu/nutritionsource/2017/09/08/pure-study-makes-headlines-but-the-conclusions-are-misleading
645Pettifor, J. M. (2014). Calcium and vitamin D metabolism in children in developing countries. Annals of Nutrition and Metabolism, 64(Suppl. 2), 15–22. www.karger.com/Article/Fulltext/365124
646Dinu, M., Abbate, R., Gensini, G. F., Casini, A. and Sofi, F. (2017). Vegetarian, vegan diets and multiple health outcomes: A systematic review with meta-analysis of observational studies. Critical Reviews in Food Science and Nutrition, 57(17), 3640–9. www.tandfonline.com/doi/abs/10.1080/10408398.2016.1138447
647Lomer, M. C., Parkes, G. C. and Sanderson, J. D. (2008). Lactose intolerance in clinical practice – Myths and realities. Alimentary Pharmacology & Therapeutics, 27(2), 93–103. onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2036.2007.03557.x
648Applegate, C. C., Rowles, J. L., Ranard, K. M., Jeon, S. and Erdman, J. W. (2018). Soy consumption and the risk of prostate cancer: An updated systematic review and meta-analysis. Nutrients, 10(1), 40. www.mdpi.com/2072-6643/10/1/40
649Tantamango-Bartley, Y. et al. (2016). Are strict vegetarians protected against prostate cancer? American Journal of Clinical Nutrition, 103(1), 153–60. academic.oup.com/ajcn/article-abstract/103/1/153/4569296
650Shin, S. et al. (2018). Dietary patterns and prostate cancer risk in Japanese: The Japan Public Health Center-based Prospective Study (JPHC Study). Cancer Causes & Control, 29(6), 589–600. pubmed.ncbi.nlm.nih.gov/29671180
651Li, N. et al. (2020). Soy and isoflavone consumption and multiple health outcomes: Umbrella review of systematic reviews and meta‐analyses of observational studies and randomized trials in humans. Molecular Nutrition & Food Research, 64(4), 1900751. onlinelibrary.wiley.com/doi/abs/10.1002/mnfr.201900751
652Lu, D. et al. (2017). Meta-analysis of soy consumption and gastrointestinal cancer risk. Scientific Reports, 7(1), 1–14. www.nature.com/articles/s41598-017-03692-y
653Messina, M. (2016). Impact of soy foods on the development of breast cancer and the prognosis of breast cancer patients. Complementary Medicine Research, 23(2), 75–80. www.karger.com/Article/Abstract/444735
654Trock, B. J., Hilakivi-Clarke, L. and Clarke, R. (2006). Meta-analysis of soy intake and breast cancer risk. Journal of the National Cancer Institute, 98(7), 459–71. academic.oup.com/jnci/article-abstract/98/7/459/2522023
655National Cancer Control Policy. (2013). Position statement – Soy, phyto-oestrogens and cancer prevention. Cancer Council Australia. wiki.cancer.org.au/policy/Position_statement_-_Soy,_phyto-oestrogens_and_cancer_prevention
656American Cancer Society. Soy and cancer risk: Our expert’s advice. American Cancer Society, 29 April 2019. www.cancer.org/latest-news/soy-and-cancer-risk-our-experts-advice.html
657Richman, E. L., Kenfield, S. A., Stampfer, M. J., Giovannucci, E. L. and Chan, J. M. (2011). Egg, red meat, and poultry intake and risk of lethal prostate cancer in the prostate-specific antigen-era: Incidence and survival. Cancer Prevention Research, 4(12), 2110-2121. cancerpreventionresearch.aacrjournals.org/content/4/12/2110
658Snowdon, D. A., Phillips, R. L. and Choi, W. (1984). Diet, obesity, and risk of fatal prostate cancer. American Journal of Epidemiology, 120(2), 244–50. academic.oup.com/aje/article-abstract/120/2/244/124466
659Tse, G. and Eslick, G. D. (2014). Egg consumption and risk of GI neoplasms: Dose-response meta-analysis and systematic review. European Journal of Nutrition, 53(7), 1581–90. link.springer.com/content/pdf/10.1007/s00394-014-0664-5.pdf
660World Cancer Research Fund. Do eggs increase risk of prostate cancer? World Cancer Research Fund UK. 30 September 2011.www.wcrf-uk.org/uk/blog/articles/2011/09/do-eggs-increase-risk-prostate-cancer
661Orlich, M. J et al. (2013). Vegetarian dietary patterns and mortality in Adventist Health Study 2. JAMA Internal Medicine, 173(13), 1230–8. jamanetwork.com/journals/jamainternalmedicine/article-abstract/1710093
662Willcox, D. C., Scapagnini, G. and Willcox, B. J. (2014). Healthy aging diets other than the Mediterranean: A focus on the Okinawan diet. Mechanisms of Ageing and Development, 136, 148–62. www.sciencedirect.com/science/article/pii/S0047637414000037
663Blue Zones. Food Guidelines. Blue Zones.www.bluezones.com/recipes/food-guidelines
664Nguyen, T. T., Ung, T. T., Kim, N. H. and Jung, Y. D. (2018). Role of bile acids in colon carcinogenesis. World Journal of Clinical Cases, 6(13), 577–88. www.ncbi.nlm.nih.gov/pmc/articles/PMC6232560/
665David, L. A. et al. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505(7484), 559–63. www.nature.com/articles/nature12820
666O’Keefe, S. J. et al. (2015). Fat, fibre and cancer risk in African Americans and rural Africans. Nature Communications, 6(1), 1–14. www.nature.com/articles/ncomms7342
667Vipperla, K. and O’Keefe, S. J. (2016). Diet, microbiota, and dysbiosis: A ‘recipe’ for colorectal cancer. Food & Function, 7(4), 1731–40. pubs.rsc.org/lv/content/articlehtml/2016/fo/c5fo01276g
668Zeng, H., Umar, S., Rust, B., Lazarova, D. and Bordonaro, M. (2019). Secondary bile acids and short chain fatty acids in the colon: A focus on colonic microbiome, cell proliferation, inflammation, and cancer. International Journal of Molecular Sciences, 20(5), 1214.www.mdpi.com/1422-0067/20/5/1214
669Baraldi, L. G., Steele, E. M., Canella, D. S. and Monteiro, C. A. (2018). Consumption of ultra-processed foods and associated sociodemographic factors in the USA between 2007 and 2012: Evidence from a nationally representative cross-sectional study. BMJ Open, 8(3), e020574. bmjopen.bmj.com/content/8/3/e020574
670Fiolet, T. et al. (2018). Consumption of ultra-processed foods and cancer risk: Results from NutriNet-Santé prospective cohort. BMJ, 360, k322. www.bmj.com/content/360/bmj.k322
671World Cancer Research Fund and American Institute for Cancer Research. (2018). Continuous Update Project Expert Report 2018. Other dietary exposures and the risk of cancer.www.wcrf.org/sites/default/files/Other-dietary-exposures.pdf
672Fardet A. (2016). Minimally processed foods are more satiating and less hyperglycemic than ultra-processed foods: A preliminary study with 98 ready-to-eat foods. Food & Function, 7(5), 2338–46. pubs.rsc.org/en/content/articlehtml/2016/fo/c6fo00107f
673Rico-Campà, A., Martínez-González, M. A., Alvarez-Alvarez, I., de Deus Mendonça, R., de la Fuente-Arrillaga, C., Gómez-Donoso, C. and Bes-Rastrollo, M. (2019). Association between consumption of ultra-processed foods and all cause mortality: SUN Prospective Cohort Study. BMJ, 365, l1949. www.bmj.com/content/365/bmj.l1949
674D’Elia, L., Rossi, G., Ippolito, R., Cappuccio, F. P. and Strazzullo, P. (2012). Habitual salt intake and risk of gastric cancer: A meta-analysis of prospective studies. Clinical Nutrition, 31(4), 489–98. www.sciencedirect.com/science/article/pii/S0261561412000052
675Ge, S., Feng, X., Shen, L., Wei, Z., Zhu, Q. and Sun, J. (2012). Association between habitual dietary salt intake and risk of gastric cancer: A systematic review of observational studies. Gastroenterology Research and Practice, 2012. www.hindawi.com/journals/grp/2012/808120
676World Cancer Research Fund and American Institute for Cancer Research. (2018). Stomach cancer. World Cancer Research Fund International.www.wcrf.org/dietandcancer/stomach-cancer
677World Cancer Research Fund and American Institute for Cancer Research. (2018). Continuous Update Project Expert Report 2018. Preservation and processing of foods and the risk of cancer.www.wcrf.org/sites/default/files/Preservation-and-processing-of-foods.pdf
678Wang, X. Q., Terry, P. D. and Yan, H. (2009). Review of salt consumption and stomach cancer risk: Epidemiological and biological evidence. World Journal of Gastroenterology, 15(18), 2204–13. www.ncbi.nlm.nih.gov/pmc/articles/PMC2682234
679Wroblewski, L. E., Peek, R. M., Jr and Wilson, K. T. (2010). Helicobacter pylori and gastric cancer: Factors that modulate disease risk. Clinical Microbiology Reviews, 23(4), 713–39. cmr.asm.org/content/23/4/713
680Naylor, G. M. et al. (2006). Why does Japan have a high incidence of gastric cancer? Comparison of gastritis between UK and Japanese patients. Gut, 55(11), 1545–52. gut.bmj.com/content/55/11/1545
681Land, M. A., Neal, B. C., Johnson, C., Nowson, C. A., Margerison, C. and Petersen, K. S. (2018). Salt consumption by Australian adults: A systematic review and meta‐analysis. Medical Journal of Australia, 208(2), 75–81. onlinelibrary.wiley.com/doi/abs/10.5694/mja17.00394
682Australian Government National Health and Medical Research Council and New Zealand Ministry of Health. (2017). Sodium. Nutrient Reference Values for Australia and New Zealand.www.nrv.gov.au/nutrients/sodium
683Food Standards Australia New Zealand. (2015). How much sodium do Australians eat? FSANZ.www.foodstandards.gov.au/consumer/nutrition/salthowmuch/Pages/howmuchsaltareweeating/howmuchsaltandsodium4551.aspx
684World Cancer Research Fund and American Institute for Cancer Research. (2018). Continuous Update Project Expert Report 2018. Alcoholic drinks and the risk of cancer.www.wcrf.org/sites/default/files/Alcoholic-Drinks.pdf
685Seitz, H. K. and Stickel, F. (2007). Molecular mechanisms of alcohol-mediated carcinogenesis. Nature Reviews Cancer, 7(8), 599–612. www.nature.com/articles/nrc2191
686Albano, E. (2006). Alcohol, oxidative stress and free radical damage. Proceedings of the Nutrition Society, 65(3), 278–90. www.cambridge.org/core/journals/proceedings-of-the-nutrition-society/article/alcohol-oxidative-stress-and-free-radical-damage/10355F6146443B7E3225D2590BA8967B
687Singletary, K. W. and Gapstur, S. M. (2001). Alcohol and breast cancer: Review of epidemiologic and experimental evidence and potential mechanisms. JAMA, 286(17), 2143–51. jamanetwork.com/journals/jama/article-abstract/194343
688Kong, S. Y. et al. (2016). Serum endotoxins and flagellin and risk of colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Cancer Epidemiology, Biomarkers & Prevention, 25(2), 291–301. pubmed.ncbi.nlm.nih.gov/26823475
689Fedirko, V. et al. (2017). Exposure to bacterial products lipopolysaccharide and flagellin and hepatocellular carcinoma: A nested case-control study. BMC Medicine, 15(1), 72. link.springer.com/article/10.1186/s12916-017-0830-8
690World Cancer Research Fund and American Institute for Cancer Research. (2018). Continuous Update Project Expert Report 2018. Wholegrains, vegetables and fruit and the risk of cancer. www.wcrf.org/sites/default/files/Wholegrains-veg-and-fruit.pdf
691Peters, U. et al. (2003). Dietary fibre and colorectal adenoma in a colorectal cancer early detection programme. The Lancet, 361(9368), 1491–5. www.sciencedirect.com/science/article/pii/S014067360313173X
692Aune, D., Chan, D. S., Lau, R., Vieira, R., Greenwood, D. C., Kampman, E. and Norat, T. (2011). Dietary fibre, whole grains, and risk of colorectal cancer: Systematic review and dose-response meta-analysis of prospective studies. BMJ, 343, d6617. www.bmj.com/content/343/bmj.d6617
693World Cancer Research Fund and American Institute for Cancer Research. (2018). Eat wholegrains, vegetables, fruit & beans. WCRF. www.wcrf.org/dietandcancer/recommendations/wholegrains-veg-fruit-beans
694Slavin, J. L., Jacobs, D. and Marquart, L. (2000). Grain processing and nutrition. Critical Reviews in Food Science and Nutrition, 40(4), 309–26. www.tandfonline.com/doi/abs/10.1080/10408690091189176
695Reynolds, A., Mann, J., Cummings, J., Winter, N., Mete, E. and Te Morenga, L. (2019). Carbohydrate quality and human health: A series of systematic reviews and meta-analyses. The Lancet, 393(10170), 434–45. www.sciencedirect.com/science/article/pii/S0140673618318099
696Rock, C. L. et al. (2020). American Cancer Society guideline for diet and physical activity for cancer prevention. CA: A Cancer Journal for Clinicians, 70(4), 245–71. acsjournals.onlinelibrary.wiley.com/doi/full/10.3322/caac.21591
697Young, G. P., Hu, Y., Le Leu, R. K. and Nyskohus, L. (2005). Dietary fibre and colorectal cancer: A model for environment–gene interactions. Molecular Nutrition & Food Research, 49(6), 571–84. www.researchgate.net/publication/7872956_Dietary_fibre_and_colorectal_cancer_A_model_for_environment_-_Gene_interactions
698Segain, J. P. et al. (2000). Butyrate inhibits inflammatory responses through NFκB inhibition: Implications for Crohn’s disease. Gut, 47(3), 397–403. gut.bmj.com/content/47/3/397
699Wu, X., Wu, Y., He, L., Wu, L., Wang, X. and Liu, Z. (2018). Effects of the intestinal microbial metabolite butyrate on the development of colorectal cancer. Journal of Cancer, 9(14), 2510.www.ncbi.nlm.nih.gov/pmc/articles/PMC6036887
6100Ocvirk, S. and O’Keefe, S. J. (2017). Influence of bile acids on colorectal cancer risk: Potential mechanisms mediated by diet-gut microbiota interactions. Current Nutrition Reports, 6(4), 315–22. link.springer.com/article/10.1007/s13668-017-0219-5
6101Burkitt, D. P. (1993). Epidemiology of cancer of the colon and rectum. Diseases of the Colon & Rectum, 36(11), 1071–82. link.springer.com/content/pdf/10.1007/BF02047303.pdf
6102O’Keefe, S. J. (2019). The association between dietary fibre deficiency and high-income lifestyle-associated diseases: Burkitt’s hypothesis revisited. The Lancet Gastroenterology & Hepatology, 4(12), 984–96. www.sciencedirect.com/science/article/pii/S2468125319302572
6103Campbell, T. C. and Junshi, C. (1994). Diet and chronic degenerative diseases: Perspectives from China. American Journal of Clinical Nutrition, 59(5), 1153S–61S. academic.oup.com/ajcn/article-abstract/59/5/1153S/4732577
6104Campbell, T. C., Parpia, B. and Chen, J. (1998). Diet, lifestyle, and the etiology of coronary artery disease: The Cornell China study. American Journal of Cardiology, 82(10), 18–21. www.sciencedirect.com/science/article/pii/S0002914998007188
6105Tantamango-Bartley, Y., Jaceldo-Siegl, K., Fan, J. and Fraser, G. (2013). Vegetarian diets and the incidence of cancer in a low-risk population. Cancer Epidemiology and Prevention Biomarkers, 22(2), 286–94. cebp.aacrjournals.org/content/22/2/286
6106Key, T. J., Appleby, P. N., Spencer, E. A., Travis, R. C., Allen, N. E., Thorogood, M. and Mann, J. I. (2009). Cancer incidence in British vegetarians. British Journal of Cancer, 101(1), 192–7.www.nature.com/articles/6605098
6107Appleby, P. N., Crowe, F. L., Bradbury, K. E., Travis, R. C. and Key, T. J. (2016). Mortality in vegetarians and comparable nonvegetarians in the United Kingdom. American Journal of Clinical Nutrition, 103(1), 218–30. academic.oup.com/ajcn/article-abstract/103/1/218/4569305
6108World Cancer Research Fund. New research shows vegan diets could lower prostate cancer risk. World Cancer Research Fund UK. 3 March 2016.www.wcrf-uk.org/uk/media-centre/press-releases/new-research-shows-vegan-diets-could-lower-prostate-cancer-risk
6109de Lorgeril, M., Salen, P., Martin, J. L., Monjaud, I., Boucher, P. and Mamelle, N. (1998). Mediterranean dietary pattern in a randomized trial: Prolonged survival and possible reduced cancer rate. Archives of Internal Medicine, 158(11), 1181–7 jamanetwork.com/journals/jamainternalmedicine/article-abstract/206745
6110Schwingshackl, L., Schwedhelm, C., Galbete, C. and Hoffmann, G. (2017). Adherence to Mediterranean diet and risk of cancer: An updated systematic review and meta-analysis. Nutrients, 9(10), 1063. www.mdpi.com/2072-6643/9/10/1063
6111Toledo, E. et al. (2015). Mediterranean diet and invasive breast cancer risk among women at high cardiovascular risk in the PREDIMED Trial: A randomized clinical trial. JAMA Internal Medicine, 175(11), 1752–60. jamanetwork.com/journals/jamainternalmedicine/article-abstract/2434738
6112World Cancer Research Fund and American Institute for Cancer Research. (2018). Continuous Update Project Expert Report 2018. Non-alcoholic drinks and the risk of cancer.www.wcrf.org/sites/default/files/Non-alcoholic-drinks.pdf
6113Salomone, F., Galvano, F. and Li Volti, G. (2017). Molecular bases underlying the hepatoprotective effects of coffee. Nutrients, 9(1), 85. www.mdpi.com/2072-6643/9/1/85
6114Sagara, Y., Miyata, Y., Nomata, K., Hayashi, T. and Kanetake, H. (2010). Green tea polyphenol suppresses tumor invasion and angiogenesis in N-butyl-(-4-hydroxybutyl) nitrosamine-induced bladder cancer. Cancer Epidemiology, 34(3), 350–4. www.sciencedirect.com/science/article/pii/S1877782110000342
6115Huang, Y., Xiao, D., Burton-Freeman, B. M. and Edirisinghe, I. (2016). Chemical changes of bioactive phytochemicals during thermal processing. In Elsevier, Reference Module in Food Science. www.sciencedirect.com/science/article/pii/B9780081005965030559
6116World Cancer Research Fund and American Institute for Cancer Research. (2018). Do not use supplements for cancer prevention. World Cancer Research Fund International.www.wcrf.org/dietandcancer/recommendations/dont-rely-supplements
6117Baudry, J. et al. (2018). Association of frequency of organic food consumption with cancer risk: Findings from the NutriNet-Santé Prospective Cohort Study. JAMA Internal Medicine, 178(12), 1597–606. jamanetwork.com/journals/jamainternalmedicine/article-abstract/2707948
6118Bradbury, K. E. et al. (2014). Organic food consumption and the incidence of cancer in a large prospective study of women in the United Kingdom. British Journal of Cancer, 110(9), 2321–6. www.nature.com/articles/bjc2014148
6119Vigar, V., Myers, S., Oliver, C., Arellano, J., Robinson, S. and Leifert, C. (2020). A systematic review of organic versus conventional food consumption: Is there a measurable benefit on human health? Nutrients, 12(1), 7. www.mdpi.com/2072-6643/12/1/7
6120International Agency for Research on Cancer; World Health Organization. IARC Monographs Volume 112: Evaluation of five organophosphate insecticides and herbicides. International Agency for Research on Cancer, Lyon; World Health Organization, Geneva. www.iarc.fr/wp-content/uploads/2018/07/MonographVolume112-1.pdf
6121Barański, M. et al. (2014). Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: A systematic literature review and meta-analyses. British Journal of Nutrition, 112(5), 794–811. www.cambridge.org/core/journals/british-journal-of-nutrition/article/higher-antioxidant-and-lower-cadmium-concentrations-and-lower-incidence-of-pesticide-residues-in-organically-grown-crops-a-systematic-literature-review-and-metaanalyses/33F09637EAE6C4ED119E0C4BFFE2D5B1
6122Hemler, E. C., Chavarro, J. E. and Hu, F. B. (2018). Organic foods for cancer prevention – Worth the investment? JAMA Internal Medicine, 178(12), 1606–7. jamanetwork.com/journals/jamainternalmedicine/article-abstract/2707943
71World Health Organization. (2006). Neurological Disorders: Public health challenges. World Health Organization, Switzerland. www.who.int/mental_health/neurology/neurological_disorders_report_web.pdf
72Dementia Australia. What is dementia? Dementia Australia.www.dementia.org.au/about-dementia/what-is-dementia
73Solfrizzi, V. et al. (2008). Lifestyle-related factors in predementia and dementia syndromes. Expert Review of Neurotherapeutics, 8(1), 133–58. www.tandfonline.com/doi/abs/10.1586/14737175.8.1.133
74Evans, D. A. et al. (1989). Prevalence of Alzheimer’s disease in a community population of older persons: Higher than previously reported. JAMA, 262(18), 2551–6. jamanetwork.com/journals/jama/article-abstract/379351
75Heeren, T. J., Lagaay, A. M., Hijmans, W. and Rooymans, H. G. (1991). Prevalence of dementia in the ‘oldest old’ of a Dutch community. Journal of the American Geriatrics Society, 39(8), 755–9. onlinelibrary.wiley.com/doi/abs/10.1111/j.1532-5415.1991.tb02696.x
76Lang, L. et al. (2017). Prevalence and determinants of undetected dementia in the community: A systematic literature review and a meta-analysis. BMJ Open, 7(2), e011146. bmjopen.bmj.com/content/7/2/e011146
77Alzheimer’s Disease International. Dementia statistics. Alzheimer’s Disease International.www.alz.co.uk/research/statistics
78Dementia Australia. (2020). Dementia statistics. Dementia Australia.www.dementia.org.au/statistics
79Alzheimer’s Association. Is dementia hereditary? Alzheimer’s Association UK.www.alzheimers.org.uk/about-dementia/risk-factors-and-prevention/is-dementia-hereditary
710Verheijen, J. and Sleegers, K. (2018). Understanding Alzheimer disease at the interface between genetics and transcriptomics. Trends in Genetics, 34(6), 434–47. www.sciencedirect.com/science/article/pii/S0168952518300428
711Duong, S., Patel, T. and Chang, F. (2017). Dementia: What pharmacists need to know. Canadian Pharmacists Journal/Revue des Pharmaciens du Canada, 150(2), 118–29. journals.sagepub.com/doi/abs/10.1177/1715163517690745
712Nalbantoglu, J., Gilfix, B. M., Bertrand, P., Robitaille, Y., Gauthier, S., Rosenblatt, D. S. and Poirier, J. (1994). Predictive value of apolipoprotein E genotyping in Alzheimer’s disease: Results of an autopsy series and an analysis of several combined studies. Annals of Neurology, 36(6), 889–95. onlinelibrary.wiley.com/doi/abs/10.1002/ana.410360614
713Breitner, J. C. et al. (1995). Alzheimer’s disease in the National Academy of Sciences – National Research Council Registry of Aging Twin Veterans: III. Detection of cases, longitudinal results, and observations on twin concordance. Archives of Neurology, 52(8), 763–71. jamanetwork.com/journals/jamaneurology/article-abstract/593579
714Sherzai, D. and Sherzai, A. (2017). The Alzheimer’s Solution: A revolutionary guide to how you can prevent and reverse memory loss. Simon & Schuster, London. www.simonandschuster.com.au/books/The-Alzheimers-Solution/Dean-Sherzai/9781471162787
715Kolata, G. That new Alzheimer’s drug? Don’t get your hopes up yet. New York Times. 22 October 2019. www.nytimes.com/2019/10/22/health/alzheimers-dementia-aducanumab.html
716Cremonini, A. L., Caffa, I., Cea, M., Nencioni, A., Odetti, P. and Monacelli, F. (2019). Nutrients in the Prevention of Alzheimer’s Disease. Oxidative Medicine and Cellular Longevity, 2019, 9874159.www.hindawi.com/journals/omcl/2019/9874159
717Morris, M. C., Tangney, C. C., Wang, Y., Sacks, F. M., Bennett, D. A. and Aggarwal, N. T. (2015). MIND diet associated with reduced incidence of Alzheimer’s disease. Alzheimer’s & Dementia, 11(9), 1007–14. www.sciencedirect.com/science/article/pii/S1552526015000175
718Morris, M. C., Wang, Y., Barnes, L. L., Bennett, D. A., Dawson-Hughes, B. and Booth, S. L. (2018). Nutrients and bioactives in green leafy vegetables and cognitive decline: Prospective study. Neurology, 90(3), e214–22. n.neurology.org/content/90/3/e214?fbclid=IwAR0Bfu9q-eKvfRfhVVsYMD8qDKMF1th3b_CN2JxDg4DdWpEFkhy_V_46c18
719Agarwal, P., Holland, T. M., Wang, Y., Bennett, D. A. and Morris, M. C. (2019). Association of strawberries and anthocyanidin intake with Alzheimer’s dementia risk. Nutrients, 11(12), 3060. www.mdpi.com/2072-6643/11/12/3060
720Rakesh, G., Szabo, S. T., Alexopoulos, G. S. and Zannas, A. S. (2017). Strategies for dementia prevention: Latest evidence and implications. Therapeutic Advances in Chronic Disease, 8(8–9), 121–36. journals.sagepub.com/doi/abs/10.1177/2040622317712442
721Pedditzi, E., Peters, R. and Beckett, N. (2016). The risk of overweight/obesity in mid-life and late life for the development of dementia: A systematic review and meta-analysis of longitudinal studies. Age and Ageing, 45(1), 14–21. pubmed.ncbi.nlm.nih.gov/26764391
722Zhang, J., Chen, C., Hua, S., Liao, H., Wang, M., Xiong, Y. and Cao, F. (2017). An updated meta-analysis of cohort studies: Diabetes and risk of Alzheimer’s disease. Diabetes Research and Clinical Practice, 124, 41–7. pubmed.ncbi.nlm.nih.gov/28088029
723Hofman, A. et al. (1997). Atherosclerosis, apolipoprotein E, and prevalence of dementia and Alzheimer’s disease in the Rotterdam Study. The Lancet, 349(9046), 151–4. www.sciencedirect.com/science/article/pii/S0140673696093282
724Ott, A. et al. (1998). Smoking and risk of dementia and Alzheimer’s disease in a population-based cohort study: The Rotterdam Study. The Lancet, 351(9119), 1840–3. www.sciencedirect.com/science/article/pii/S0140673697075417
725Anstey, K. J., Cherbuin, N., Budge, M. and Young, J. (2011). Body mass index in midlife and late‐life as a risk factor for dementia: A meta‐analysis of prospective studies. Obesity Reviews, 12(5), e426–37. onlinelibrary.wiley.com/doi/full/10.1111/j.1467-789X.2010.00825.x
726Leonard, B. E. (2007). Inflammation, depression and dementia: Are they connected? Neurochemical Research, 32(10), 1749–56. link.springer.com/article/10.1007/s11064-007-9385-y
727Kivipelto, M. et al. (2001). Midlife vascular risk factors and Alzheimer’s disease in later life: Longitudinal, population based study. BMJ, 322(7300), 1447–51. www.bmj.com/content/322/7300/1447
728Nordström, A. and Nordström, P. (2018). Traumatic brain injury and the risk of dementia diagnosis: A nationwide cohort study. PLOS Medicine, 15(1), e1002496. journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1002496
729Green, R. C. et al. (2003). Depression as a risk factor for Alzheimer disease: The MIRAGE Study. Archives of Neurology, 60(5), 753–9. jamanetwork.com/journals/jamaneurology/article-abstract/784148
730Ouanes, S. and Popp, J. (2019). High cortisol and the risk of dementia and Alzheimer’s disease: A review of the literature. Frontiers in Aging Neuroscience, 11, 43. www.frontiersin.org/articles/10.3389/fnagi.2019.00043
731Kaneshwaran, K. et al. (2019). Sleep fragmentation, microglial aging, and cognitive impairment in adults with and without Alzheimer’s dementia. Science Advances, 5(12), eaax7331. advances.sciencemag.org/content/5/12/eaax7331
732Welch, K. A. (2017). Alcohol consumption and brain health. BMJ, 357, j2645. www.bmj.com/content/357/bmj.j2645
733Sprecher, K. E. et al. (2017). Poor sleep is associated with CSF biomarkers of amyloid pathology in cognitively normal adults. Neurology, 89(5), 445–53. n.neurology.org/content/89/5/445
734Solomon, A., Kivipelto, M., Wolozin, B., Zhou, J. and Whitmer, R. A. (2009). Midlife serum cholesterol and increased risk of Alzheimer’s and vascular dementia three decades later. Dementia and Geriatric Cognitive Disorders, 28(1), 75–80. www.karger.com/Article/Abstract/231980
735Chang, C. Y., Ke, D. S. and Chen, J. Y. (2009). Essential fatty acids and human brain. Acta Neurologica Taiwanica, 18(4), 231–41. www.researchgate.net/profile/Chia_Yu_Chang3/publication/42438067_Essential_fatty_acids_and_human_brain/links/550048aa0cf204d683b3473a.pdf
736Zhang, J. and Liu, Q. (2015). Cholesterol metabolism and homeostasis in the brain. Protein & Cell, 6(4), 254–64. link.springer.com/content/pdf/10.1007/s13238-014-0131-3.pdf
737Morris, M. C. and Tangney, C. C. (2014). Dietary fat composition and dementia risk. Neurobiology of Aging, 35, S59–64. www.sciencedirect.com/science/article/pii/S0197458014003546
738Wang, D. D. et al. (2016). Association of specific dietary fats with total and cause-specific mortality. JAMA Internal Medicine, 176(8), 1134–45. jamanetwork.com/journals/jamainternalmedicine/article-abstract/2530902
739Granholm, A. C., Bimonte-Nelson, H. A., Moore, A. B., Nelson, M. E., Freeman, L. R. and Sambamurti, K. (2008). Effects of a saturated fat and high cholesterol diet on memory and hippocampal morphology in the middle-aged rat. Journal of Alzheimer’s Disease, 14(2), 133–45. content.iospress.com/articles/journal-of-alzheimers-disease/jad00835
740Barnard, N. D., Bunner, A. E. and Agarwal, U. (2014). Saturated and trans fats and dementia: A systematic review. Neurobiology of Aging, 35, S65–73. www.sciencedirect.com/science/article/pii/S0197458014003558
741Okereke, O. I. et al. (2012). Dietary fat types and 4‐year cognitive change in community‐dwelling older women. Annals of Neurology, 72(1), 124–34. onlinelibrary.wiley.com/doi/abs/10.1002/ana.23593
742Kalmijn, S., Launer, L. J., Ott, A., Witteman, J. C., Hofman, A. and Breteler, M. M. (1997). Dietary fat intake and the risk of incident dementia in the Rotterdam Study. Annals of Neurology, 42(5), 776–82. onlinelibrary.wiley.com/doi/abs/10.1002/ana.410420514
743Liu, A. G., Ford, N. A., Hu, F. B., Zelman, K. M., Mozaffarian, D. and Kris-Etherton, P. M. (2017). A healthy approach to dietary fats: Understanding the science and taking action to reduce consumer confusion. Nutrition Journal, 16(1), 53. www.ncbi.nlm.nih.gov/pmc/articles/PMC5577766
744Morris, M. C. et al. (2003). Dietary fats and the risk of incident Alzheimer disease. Archives of Neurology, 60(2), 194–200. pubmed.ncbi.nlm.nih.gov/12580703
745Olsson, A. G. et al. (2017). Can LDL cholesterol be too low? Possible risks of extremely low levels. Journal of Internal Medicine, 281(6), 534–53. onlinelibrary.wiley.com/doi/abs/10.1111/joim.12614
746Blom, D. J., Djedjos, C. S., Monsalvo, M. L., Bridges, I., Wasserman, S. M., Scott, R. and Roth, E. (2015). Effects of evolocumab on vitamin E and steroid hormone levels: Results from the 52-week, phase 3, double-blind, randomized, placebo-controlled DESCARTES study. Circulation Research, 117(8), 731–41. www.ahajournals.org/doi/abs/10.1161/CIRCRESAHA.115.307071
747Cybulska, B., Kłosiewicz-Latoszek, L., Penson, P. E., Nabavi, S. M., Lavie, C. J. and Banach, M. (2020). How much should LDL cholesterol be lowered in secondary prevention? Clinical efficacy and safety in the era of PCSK9 inhibitors. Progress in Cardiovascular Diseases, advance online publication. www.sciencedirect.com/science/article/pii/S0033062020302103
748Alzheimer’s Society. Coconut oil and dementia. Alzheimer’s Society.www.alzheimers.org.uk/about-dementia/treatments/alternative-therapies/coconut-oil-and-dementia
749Neelakantan, N., Seah, J. and van Dam, R. M. (2020). The effect of coconut oil consumption on cardiovascular risk factors: A systematic review and meta-analysis of clinical trials. Circulation, 141(10), 803–14.pubmed.ncbi.nlm.nih.gov/31928080
750Giem, P., Beeson, W. L. and Fraser, G. E. (1993). The incidence of dementia and intake of animal products: Preliminary findings from the Adventist Health Study. Neuroepidemiology, 12(1), 28–36.www.karger.com/Article/Abstract/110296
751Wu, J. et al. (2019). Dietary pattern in midlife and cognitive impairment in late life: A prospective study in Chinese adults. American Journal of Clinical Nutrition, 110(4), 912–20. academic.oup.com/ajcn/article-abstract/110/4/912/5543218
752Loughrey, D. G., Lavecchia, S., Brennan, S., Lawlor, B. A. and Kelly, M. E. (2017). The impact of the Mediterranean diet on the cognitive functioning of healthy older adults: A systematic review and meta-analysis. Advances in Nutrition, 8(4), 571–86. academic.oup.com/advances/article-abstract/8/4/571/4558137
753Cao, L. et al. (2016). Dietary patterns and risk of dementia: A systematic review and meta-analysis of cohort studies. Molecular Neurobiology, 53(9), 6144–54. link.springer.com/article/10.1007/s12035-015-9516-4
754Berendsen, A. A., Kang, J. H., van de Rest, O., Feskens, E. J., de Groot, L. C. and Grodstein, F. (2017). The dietary approaches to stop hypertension diet, cognitive function, and cognitive decline in American older women. Journal of the American Medical Directors Association, 18(5), 427–32. www.sciencedirect.com/science/article/pii/S1525861016305588
755Wengreen, H. et al. (2013). Prospective study of Dietary Approaches to Stop Hypertension– and Mediterranean-style dietary patterns and age-related cognitive change: The Cache County Study on Memory, Health and Aging. American Journal of Clinical Nutrition, 98(5), 1263–71.academic.oup.com/ajcn/article-abstract/98/5/1263/4577302
756Lourida, I. et al. (2013). Mediterranean diet, cognitive function, and dementia: A systematic review. Epidemiology, 24(4), 479–89. www.jstor.org/stable/23486687
757Morris, M. C., Tangney, C. C., Wang, Y., Sacks, F. M., Barnes, L. L., Bennett, D. A. and Aggarwal, N. T. (2015). MIND diet slows cognitive decline with aging. Alzheimer’s & Dementia, 11(9), 1015–22. www.sciencedirect.com/science/article/pii/S1552526015001946
758Hosking, D. E., Eramudugolla, R., Cherbuin, N. and Anstey, K. J. (2019). MIND not Mediterranean diet related to 12-year incidence of cognitive impairment in an Australian longitudinal cohort study. Alzheimer’s & Dementia, 15(4), 581–9. www.sciencedirect.com/science/article/pii/S1552526018336288
759Morris, M. C., Evans, D. A., Tangney, C. C., Bienias, J. L. and Wilson, R. S. (2006). Associations of vegetable and fruit consumption with age-related cognitive change. Neurology, 67(8), 1370–6.n.neurology.org/content/67/8/1370
760Devore, E. E., Kang, J. H., Breteler, M. M. and Grodstein, F. (2012). Dietary intakes of berries and flavonoids in relation to cognitive decline. Annals of Neurology, 72(1), 135–43. onlinelibrary.wiley.com/doi/abs/10.1002/ana.23594
761Engelhart, M. J., Geerlings, M. I., Ruitenberg, A., van Swieten, J. C., Hofman, A., Witteman, J. C. and Breteler, M. M. (2002). Dietary intake of antioxidants and risk of Alzheimer disease. JAMA, 287(24), 3223–9. jamanetwork.com/journals/jama/article-abstract/195058
762Commenges, D., Scotet, V., Renaud, S., Jacqmin-Gadda, H., Barberger-Gateau, P. and Dartigues, J. F. (2000). Intake of flavonoids and risk of dementia. European Journal of Epidemiology, 16(4), 357–63. link.springer.com/article/10.1023/A:1007614613771
763Letenneur, L., Proust-Lima, C., Le Gouge, A., Dartigues, J. F. and Barberger-Gateau, P. (2007). Flavonoid intake and cognitive decline over a 10-year period. American Journal of Epidemiology, 165(12), 1364–71. academic.oup.com/aje/article-abstract/165/12/1364/125579
764Feart, C. et al. (2016). Plasma carotenoids are inversely associated with dementia risk in an elderly French cohort. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 71(5), 683–8.academic.oup.com/biomedgerontology/article-abstract/71/5/683/2465599
765Filosa, S., Di Meo, F. and Crispi, S. (2018). Polyphenols-gut microbiota interplay and brain neuromodulation. Neural Regeneration Research, 13(12), 2055. www.ncbi.nlm.nih.gov/pmc/articles/pmc6199944
766Dueñas, M. et al. (2015). A survey of modulation of gut microbiota by dietary polyphenols. BioMed Research International, 2015, 850902. www.hindawi.com/journals/bmri/2015/850902
767Ho, L., Ono, K., Tsuji, M., Mazzola, P., Singh, R. and Pasinetti, G. M. (2018). Protective roles of intestinal microbiota derived short chain fatty acids in Alzheimer’s disease-type beta-amyloid neuropathological mechanisms. Expert Review of Neurotherapeutics, 18(1), 83–90. www.tandfonline.com/doi/abs/10.1080/14737175.2018.1400909
768Szwajgier, D., Borowiec, K. and Pustelniak, K. (2017). The neuroprotective effects of phenolic acids: Molecular mechanism of action. Nutrients, 9(5), 477. www.mdpi.com/2072-6643/9/5/477
769Omar, S. H. (2019). Mediterranean and MIND diets containing olive biophenols reduces the prevalence of Alzheimer’s disease. International Journal of Molecular Sciences, 20(11), 2797. www.mdpi.com/1422-0067/20/11/2797
770Radd-Vagenas, S., Duffy, S. L., Naismith, S. L., Brew, B. J., Flood, V. M. and Fiatarone Singh, M. A. (2018). Effect of the Mediterranean diet on cognition and brain morphology and function: A systematic review of randomized controlled trials. American Journal of Clinical Nutrition, 107(3), 389–404.academic.oup.com/ajcn/article-abstract/107/3/389/4939347
771Valls-Pedret, C. et al. (2015). Mediterranean diet and age-related cognitive decline: A randomized clinical trial. JAMA Internal Medicine, 175(7), 1094–103. jamanetwork.com/journals/jamainternalmedicine/article-abstract/2293082
772Morris, M. C. MIND diet intervention and cognitive decline (MIND). ClinicalTrials.gov. clinicaltrials.gov/ct2/show/NCT02817074
773Ornish, D. Alzheimer’s disease (current trial). Preventive Medicine Research Institute. pmri.org/research/reverse-alzheimers-disease-current-trial
774Johns Hopkins University. Feasibility and efficacy of dietary interventions for older adults with subjective cognitive decline. ClinicalTrials.gov.clinicaltrials.gov/ct2/show/NCT03585907
775Dinu, M., Abbate, R., Gensini, G. F., Casini, A. and Sofi, F. (2017). Vegetarian, vegan diets and multiple health outcomes: A systematic review with meta-analysis of observational studies. Critical Reviews in Food Science and Nutrition, 57(17), 3640–9. www.tandfonline.com/doi/abs/10.1080/10408398.2016.1138447
776Benatar, J. R. and Stewart, R. (2018). Cardiometabolic risk factors in vegans: A meta-analysis of observational studies. PLOS One, 13(12), e0209086. journals.plos.org/plosone/article?id=10.1371/journal.pone.0209086
777Huang, R. Y., Huang, C. C., Hu, F. B. and Chavarro, J. E. (2016). Vegetarian diets and weight reduction: A meta-analysis of randomized controlled trials. Journal of General Internal Medicine, 31(1), 109–16. link.springer.com/article/10.1007/s11606-015-3390-7
778Yokoyama, Y., Levin, S. M. and Barnard, N. D. (2017). Association between plant-based diets and plasma lipids: A systematic review and meta-analysis. Nutrition Reviews, 75(9), 683–98. academic.oup.com/nutritionreviews/article-abstract/75/9/683/4062197
779Yokoyama, Y., Barnard, N. D., Levin, S. M. and Watanabe, M. (2014). Vegetarian diets and glycemic control in diabetes: A systematic review and meta-analysis. Cardiovascular Diagnosis and Therapy, 4(5), 373. www.ncbi.nlm.nih.gov/pmc/articles/PMC4221319
780Haghighatdoost, F., Bellissimo, N., de Zepetnek, J. O. T. and Rouhani, M. H. (2017). Association of vegetarian diet with inflammatory biomarkers: A systematic review and meta-analysis of observational studies. Public Health Nutrition, 20(15), 2713–21. www.cambridge.org/core/journals/public-health-nutrition/article/association-of-vegetarian-diet-with-inflammatory-biomarkers-a-systematic-review-and-metaanalysis-of-observational-studies/ED9F562A1AEC0E65B90A092A0427C093
781Yokoyama, Y. et al. (2014). Vegetarian diets and blood pressure: A meta-analysis. JAMA Internal Medicine, 174(4), 577–87. jamanetwork.com/journals/jamainternalmedicine/article-abstract/1832195
782Agarwal, U., Mishra, S., Xu, J., Levin, S., Gonzales, J. and Barnard, N. D. (2015). A multicenter randomized controlled trial of a nutrition intervention program in a multiethnic adult population in the corporate setting reduces depression and anxiety and improves quality of life: The GEICO study. American Journal of Health Promotion, 29(4), 245–54. journals.sagepub.com/doi/abs/10.4278/ajhp.130218-QUAN-72
783Beezhold, B. L. and Johnston, C. S. (2012). Restriction of meat, fish, and poultry in omnivores improves mood: A pilot randomized controlled trial. Nutrition Journal, 11(1), 1–5. nutritionj.biomedcentral.com/articles/10.1186/1475-2891-11-9
784McMacken, M. and Shah, S. (2017). A plant-based diet for the prevention and treatment of type 2 diabetes. Journal of Geriatric Cardiology, 14(5), 342–54. www.ncbi.nlm.nih.gov/pmc/articles/pmc5466941
785Dhana, K., Evans, D. A., Rajan, K. B., Bennett, D. A. and Morris, M. C. (2020). Healthy lifestyle and the risk of Alzheimer dementia: Findings from 2 longitudinal studies. Neurology, 95(4), e374–83. n.neurology.org/content/95/4/e374
786Xu, W., Wang, H., Wan, Y. et al. (2017). Alcohol consumption and dementia risk: A dose-response meta-analysis of prospective studies. European Journal of Epidemiology, 32, 31–42. link.springer.com/article/10.1007/s10654-017-0225-3
787Holland, T. M., Agarwal, P., Wang, Y., Leurgans, S. E., Bennett, D. A., Booth, S. L. and Morris, M. C. (2020). Dietary flavonols and risk of Alzheimer dementia. Neurology, 94(16), e1749–56. n.neurology.org/content/94/16/e1749
788Shukitt-Hale, B., Bielinski, D. F., Lau, F. C., Willis, L. M., Carey, A. N. and Joseph, J. A. (2015). The beneficial effects of berries on cognition, motor behaviour and neuronal function in ageing. British Journal of Nutrition, 114(10), 1542–9. www.cambridge.org/core/journals/british-journal-of-nutrition/article/beneficial-effects-of-berries-on-cognition-motor-behaviour-and-neuronal-function-in-ageing/751902ED1F6B94DFEC9AB7FB8C89C0DA
789Whyte, A. R., Cheng, N., Butler, L. T., Lamport, D. J. and Williams, C. M. (2019). Flavonoid-rich mixed berries maintain and improve cognitive function over a 6 h period in young healthy adults. Nutrients, 11(11), 2685. www.mdpi.com/2072-6643/11/11/2685/htm
790Dodd, G. F., Williams, C. M., Butler, L. T. and Spencer, J. P. (2019). Acute effects of flavonoid-rich blueberry on cognitive and vascular function in healthy older adults. Nutrition and Healthy Aging, 5(2), 119–32. content.iospress.com/articles/nutrition-and-healthy-aging/nha180056
791Zeng, L. F. et al. (2017). An exploration of the role of a fish-oriented diet in cognitive decline: A systematic review of the literature. Oncotarget, 8(24), 39877. www.ncbi.nlm.nih.gov/pmc/articles/PMC5503660
792Zhang, Y., Chen, J., Qiu, J., Li, Y., Wang, J. and Jiao, J. (2016). Intakes of fish and polyunsaturated fatty acids and mild-to-severe cognitive impairment risks: A dose-response meta-analysis of 21 cohort studies. American Journal of Clinical Nutrition, 103(2), 330–40. academic.oup.com/ajcn/article-abstract/103/2/330/4662879
793Morris, M. C. et al. (2003). Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease. Archives of Neurology, 60(7), 940–6. jamanetwork.com/journals/jamaneurology/article-abstract/784412
794Australian Institute of Health and Welfare. (2020). Mental health services in Australia. AIHW, Australian Government, Canberra. www.aihw.gov.au/reports/mental-health-services/mental-health-services-in-australia/report-contents/mental-health-related-prescriptions
795Saghafian, F., Malmir, H., Saneei, P., Milajerdi, A., Larijani, B. and Esmaillzadeh, A. (2018). Fruit and vegetable consumption and risk of depression: Accumulative evidence from an updated systematic review and meta-analysis of epidemiological studies. British Journal of Nutrition, 119(10), 1087–101. www.cambridge.org/core/journals/british-journal-of-nutrition/article/fruit-and-vegetable-consumption-and-risk-of-depression-accumulative-evidence-from-an-updated-systematic-review-and-metaanalysis-of-epidemiological-studies/06F5410553CF2C3849AAB0D9CE56E9B5
796Głąbska, D., Guzek, D., Groele, B. and Gutkowska, K. (2020). Fruit and vegetable intake and mental health in adults: A systematic review. Nutrients, 12(1), 115. www.mdpi.com/2072-6643/12/1/115
797Clapp, M., Aurora, N., Herrera, L., Bhatia, M., Wilen, E. and Wakefield, S. (2017). Gut microbiota’s effect on mental health: The gut–brain axis. Clinics and Practice, 7(4), 987. www.ncbi.nlm.nih.gov/pmc/articles/PMC5641835
798Littlejohns, T. J. et al. (2014). Vitamin D and the risk of dementia and Alzheimer disease. Neurology, 83(10), 920–8. n.neurology.org/content/83/10/920
799Holick, M. F. (2004). Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. American Journal of Clinical Nutrition, 80(6), 1678S–88S. academic.oup.com/ajcn/article/80/6/1678S/4690512
7100Rutjes, A. W. et al. (2018). Vitamin and mineral supplementation for maintaining cognitive function in cognitively healthy people in mid and late life. Cochrane Database of Systematic Reviews, (12), CD011906. pubmed.ncbi.nlm.nih.gov/30556597
7101Sydenham, E., Dangour, A. D. and Lim, W. S. (2012). Omega 3 fatty acid for the prevention of cognitive decline and dementia. Cochrane Database of Systematic Reviews, (6), CD005379. pubmed.ncbi.nlm.nih.gov/22696350
7102McCleery, J. et al. (2018). Vitamin and mineral supplementation for preventing dementia or delaying cognitive decline in people with mild cognitive impairment. Cochrane Database of Systematic Reviews, (11), CD011905. www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD011905.pub2
7103mhGAP. (2015). Nutritional interventions for people with dementia or cognitive impairment: Do nutritional interventions for people with dementia or cognitive impairment reduce the progression of cognitive decline? World Health Organization.www.who.int/mental_health/mhgap/evidence/dementia/Dementia_q12.pdf
7104Rajaram, S., Jones, J. and Lee, G. J. (2019). Plant-based dietary patterns, plant foods, and age-related cognitive decline. Advances in Nutrition, 10(Supplement_4), S422–36. academic.oup.com/advances/article/10/Supplement_4/S422/5624068
81Lu, Y. et al. (2019). Reversal of ageing- and injury-induced vision loss by Tet-dependent epigenetic reprogramming. BioRxiv, 710210. www.biorxiv.org/content/10.1101/710210v1
82Kane, A. E. and Sinclair, D. A. (2019). Epigenetic changes during aging and their reprogramming potential. Critical Reviews in Biochemistry and Molecular Biology, 54(1), 61–83. www.tandfonline.com/doi/abs/10.1080/10409238.2019.1570075
83Song, M., Fung, T. T., Hu, F. B., Willett, W. C., Longo, V. D., Chan, A. T. and Giovannucci, E. L. (2016). Association of animal and plant protein intake with all-cause and cause-specific mortality. JAMA Internal Medicine, 176(10), 1453–63. jamanetwork.com/journals/jamainternalmedicine/article-abstract/2540540
84Huang, J., Liao, L. M., Weinstein, S. J., Sinha, R., Graubard, B. I. and Albanes, D. (2020). Association between plant and animal protein intake and overall and cause-specific mortality. JAMA Internal Medicine, 180(9), 1173–84. jamanetwork.com/journals/jamainternalmedicine/article-abstract/2768358
85Chen, Z. et al. (2020). Dietary protein intake and all-cause and cause-specific mortality: Results from the Rotterdam Study and a meta-analysis of prospective cohort studies. European Journal of Epidemiology, 35, 411–29. link.springer.com/article/10.1007/s10654-020-00607-6
86Budhathoki, S. et al. (2019). Association of animal and plant protein intake with all-cause and cause-specific mortality in a Japanese cohort. JAMA Internal Medicine, 179(11), 1509–18. jamanetwork.com/journals/jamainternalmedicine/article-abstract/2748453
87Li, H., Li, J., Shen, Y., Wang, J. and Zhou, D. (2017). Legume consumption and all-cause and cardiovascular disease mortality. BioMed Research International, 2017, 8450618. www.hindawi.com/journals/bmri/2017/8450618
88Darmadi-Blackberry, I., Wahlqvist, M. L., Kouris-Blazos, A., Steen, B., Lukito, W., Horie, Y. and Horie, K. (2004). Legumes: The most important dietary predictor of survival in older people of different ethnicities. Asia Pacific Journal of Clinical Nutrition, 13(2), 217–20. citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.538.8279&rep=rep1&type=pdf
89Hayat, I., Ahmad, A., Masud, T., Ahmed, A. and Bashir, S. (2014). Nutritional and health perspectives of beans (Phaseolus vulgaris L.): An overview. Critical Reviews in Food Science and Nutrition, 54(5), 580–92. www.tandfonline.com/doi/abs/10.1080/10408398.2011.596639
810Sinclair, D. A. and LaPlante, M. D. (2019). Lifespan: Why we age – and why we don’t have to. Thorsons, London.www.harpercollins.com.au/9780008292362/lifespan-why-we-age-and-why-we-dont-have-to
811Gardner, C. D., Hartle, J. C., Garrett, R. D., Offringa, L. C. and Wasserman, A. S. (2019). Maximizing the intersection of human health and the health of the environment with regard to the amount and type of protein produced and consumed in the United States. Nutrition Reviews, 77(4), 197–215. www.ncbi.nlm.nih.gov/pmc/articles/PMC6394758
812Kitada, M., Ogura, Y., Monno, I. and Koya, D. (2019). The impact of dietary protein intake on longevity and metabolic health. EBioMedicine, 43, 632–40. www.ncbi.nlm.nih.gov/pmc/articles/PMC6562018
813Orgeron, M. L., Stone, K. P., Wanders, D., Cortez, C. C., Van, N. T. and Gettys, T. W. (2014). The impact of dietary methionine restriction on biomarkers of metabolic health. Progress in Molecular Biology and Translational Science, 121, 351–76. www.ncbi.nlm.nih.gov/pmc/articles/PMC4049285
814McCarty, M. F., Barroso-Aranda, J. and Contreras, F. (2009). The low-methionine content of vegan diets may make methionine restriction feasible as a life extension strategy. Medical Hypotheses, 72(2), 125–8. www.researchgate.net/publication/23256014_The_low-methionine_content_of_vegan_diets_may_make_methionine_restriction_feasible_as_a_life_extension_strategy
815Katagiri, R. et al. (2020). Dietary fiber intake and total and cause-specific mortality: The Japan Public Health Center-based prospective study. American Journal of Clinical Nutrition, 111(5), 1027–35. academic.oup.com/ajcn/article-abstract/111/5/1027/5716885
816Ding, M. et al. (2019). Associations of dairy intake with risk of mortality in women and men: Three prospective cohort studies. BMJ, 367, l6204. www.bmj.com/content/367/bmj.l6204
817Wang, D. D. et al. (2016). Association of specific dietary fats with total and cause-specific mortality. JAMA Internal Medicine, 176(8), 1134–45. jamanetwork.com/journals/jamainternalmedicine/article-abstract/2530902
818Rico-Campà, A., Martínez-González, M. A., Alvarez-Alvarez, I., de Deus Mendonça, R., de la Fuente-Arrillaga, C., Gómez-Donoso, C. and Bes-Rastrollo, M. (2019). Association between consumption of ultra-processed foods and all cause mortality: SUN prospective cohort study. BMJ, 365, l1949. www.bmj.com/content/365/bmj.l1949
819Bonaccio, M. et al. (2021). Ultra-processed food consumption is associated with increased risk of all-cause and cardiovascular mortality in the Moli-sani Study. American Journal of Clinical Nutrition, 113(2), 446–55. academic.oup.com/ajcn/article/113/2/446/6039202
820Schnabel, L. et al. (2019). Association between ultraprocessed food consumption and risk of mortality among middle-aged adults in France. JAMA Internal Medicine, 179(4), 490–8. jamanetwork.com/journals/jamainternalmedicine/article-abstract/2723626
821Zhong, V. W. et al. (2020). Associations of processed meat, unprocessed red meat, poultry, or fish intake with incident cardiovascular disease and all-cause mortality. JAMA Internal Medicine, 180(4), 503–12. jamanetwork.com/journals/jamainternalmedicine/article-abstract/2759737
822Zhong, V. W., Van Horn, L., Cornelis, M. C. et al. (2019). Associations of dietary cholesterol or egg consumption with incident cardiovascular disease and mortality. JAMA, 321(11),1081–95.jamanetwork.com/journals/jama/fullarticle/2728487
823Zhao, L. G., Sun, J. W., Yang, Y., Ma, X., Wang, Y. Y. and Xiang, Y. B. (2016). Fish consumption and all-cause mortality: A meta-analysis of cohort studies. European Journal of Clinical Nutrition, 70(2), 155–61. www.nature.com/articles/ejcn201572
824Reynolds, A., Mann, J., Cummings, J., Winter, N., Mete, E. and Te Morenga, L. (2019). Carbohydrate quality and human health: A series of systematic reviews and meta-analyses. The Lancet, 393(10170), 434–45. www.sciencedirect.com/science/article/pii/S0140673618318099
825Chen, G. C., Zhang, R., Martínez-González, M. A., Zhang, Z. L., Bonaccio, M., van Dam, R. M. and Qin, L. Q. (2017). Nut consumption in relation to all-cause and cause-specific mortality: A meta-analysis 18 prospective studies. Food & Function, 8(11), 3893–905. pubs.rsc.org/--/content/articlelanding/2017/fo/c7fo00915a
826Amba, V., Murphy, G., Etemadi, A., Wang, S., Abnet, C. C. and Hashemian, M. (2019). Nut and peanut butter consumption and mortality in the National Institutes of Health-AARP Diet and Health Study. Nutrients, 11(7), 1508. www.mdpi.com/2072-6643/11/7/1508
827Trichopoulou, A., Bamia, C. and Trichopoulos, D. (2009). Anatomy of health effects of Mediterranean diet: Greek EPIC prospective cohort study. BMJ, 338, b2337. www.bmj.com/content/338/bmj.b2337
828Kim, Y., Je, Y. and Giovannucci, E. (2019). Coffee consumption and all-cause and cause-specific mortality: A meta-analysis by potential modifiers. European Journal of Epidemiology, 34, 731–52.link.springer.com/article/10.1007/s10654-019-00524-3
829Willcox, D. C., Scapagnini, G. and Willcox, B. J. (2014). Healthy aging diets other than the Mediterranean: A focus on the Okinawan diet. Mechanisms of Ageing and Development, 136, 148–62. www.sciencedirect.com/science/article/pii/S0047637414000037
830Panagiotakos, D. B., Chrysohoou, C., Siasos, G., Zisimos, K., Skoumas, J., Pitsavos, C. and Stefanadis, C. (2011). Sociodemographic and lifestyle statistics of oldest old people (> 80 years) living in Ikaria Island: The Ikaria study. Cardiology Research and Practice, 2011, 679187. www.hindawi.com/journals/crp/2011/679187
831Pes, G. M., Tolu, F., Dore, M. P., Sechi, G. P., Errigo, A., Canelada, A. and Poulain, M. (2015). Male longevity in Sardinia, a review of historical sources supporting a causal link with dietary factors. European Journal of Clinical Nutrition, 69(4), 411–18. www.nature.com/articles/ejcn2014230
832Orlich, M. J. et al. (2013). Vegetarian dietary patterns and mortality in Adventist Health Study 2. JAMA Internal Medicine, 173(13), 1230–8. jamanetwork.com/journals/jamainternalmedicine/article-abstract/1710093
833Appel, L. J. (2008). Dietary patterns and longevity: Expanding the Blue Zones. Circulation, 118(3), 214–15. www.ahajournals.org/doi/full/10.1161/CIRCULATIONAHA.108.788497
834Keaver, L. et al. (2020). Plant- and animal-based diet quality and mortality among US adults: A cohort study. British Journal of Nutrition, 1-11. www.cambridge.org/core/journals/british-journal-of-nutrition/article/abs/plant-and-animalbased-diet-quality-and-mortality-among-us-adults-a-cohort-study/107CDCF21A89DBE9ADE0CCB2ADA08A04
835Martínez-González, M. A. et al. (2014). A provegetarian food pattern and reduction in total mortality in the Prevención con Dieta Mediterránea (PREDIMED) study. American Journal of Clinical Nutrition, 100(suppl_1), 320S–8S. academic.oup.com/ajcn/article-abstract/100/suppl_1/320S/4576429
836Aune, D. et al. (2016). Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: Systematic review and dose-response meta-analysis of prospective studies. BMJ, 353, i2716. www.bmj.com/content/353/bmj.i2716
837Khalighi Sikaroudi, M., Soltani, S., Kolahdouz‐Mohammadi, R., Clayton, Z. S., Fernandez, M. L., Varse, F. and Shidfar, F. (2020). The responses of different dosages of egg consumption on blood lipid profile: An updated systematic review and meta‐analysis of randomized clinical trials. Journal of Food Biochemistry, e13263. onlinelibrary.wiley.com/doi/abs/10.1111/jfbc.13263
838Zhuang, P. et al. (2021). Egg and cholesterol consumption and mortality from cardiovascular and different causes in the United States: A population-based cohort study. PLOS Medicine, 18(2), e1003508. journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1003508
839Cava, E. and Fontana, L. (2013). Will calorie restriction work in humans? Aging, 5(7), 507. www.ncbi.nlm.nih.gov/pmc/articles/pmc3765579
840Sedlmeier, A. M. et al. (2021). Relation of body fat mass and fat-free mass to total mortality: Results from 7 prospective cohort studies. American Journal of Clinical Nutrition, 2021, nqaa339.academic.oup.com/ajcn/advance-article-abstract/doi/10.1093/ajcn/nqaa339/6092216
841Derr, M. Of Tubers, fire and human evolution. New York Times. 16 January 2001. www.nytimes.com/2001/01/16/science/of-tubers-fire-and-human-evolution.html
842University of Minnesota. Light my fire: Cooking as key to modern human evolution. ScienceDaily. 10 August 1999.www.sciencedaily.com/releases/1999/08/990810064914.htm
843Pennisi, E. (1999). Did cooked tubers spur the evolution of big brains? Science, 283(5410), 2004–5. science.sciencemag.org/content/283/5410/2004
844Melamed, Y., Kislev, M. E., Geffen, E., Lev-Yadun, S. and Goren-Inbar, N. (2016). The plant component of an Acheulian diet at Gesher Benot Ya‘aqov, Israel. Proceedings of the National Academy of Sciences, 113(51), 14674–9. www.pnas.org/content/113/51/14674
845Barras, C. Ancient leftovers show the real Paleo diet was a veggie feast. New Scientist. 5 December 2016. www.newscientist.com/article/2115127-ancient-leftovers-show-the-real-paleo-diet-was-a-veggie-feast
846Mercader, J. (2009). Mozambican grass seed consumption during the Middle Stone Age. Science, 326(5960), 1680–3. science.sciencemag.org/content/326/5960/1680
847Eaton, S. B. (2006). The ancestral human diet: What was it and should it be a paradigm for contemporary nutrition? Proceedings of the Nutrition Society, 65(1), 1–6. www.cambridge.org/core/journals/proceedings-of-the-nutrition-society/article/ancestral-human-diet-what-was-it-and-should-it-be-a-paradigm-for-contemporary-nutrition/36E3866D0207692F8CA1CCA3BD947055
848Hoffman, L. C. and Wiklund, E. (2006). Game and venison – meat for the modern consumer. Meat Science, 74(1), 197–208. www.sciencedirect.com/science/article/pii/S0309174006001070
849Paleari, M. A., Camisasca, S., Beretta, G., Renon, P., Corsico, P., Bertolo, G. and Crivelli, G. (1998). Ostrich meat: Physico-chemical characteristics and comparison with turkey and bovine meat. Meat Science, 48(3–4), 205–10. www.sciencedirect.com/science/article/pii/S0309174097000910
850Ricci, C., Baumgartner, J., Zec, M., Kruger, H. S. and Smuts, C. M. (2018). Type of dietary fat intakes in relation to all-cause and cause-specific mortality in US adults: An iso-energetic substitution analysis from the American National Health and Nutrition Examination Survey linked to the US mortality registry. British Journal of Nutrition, 119(4), 456–63. www.cambridge.org/core/journals/british-journal-of-nutrition/article/type-of-dietary-fat-intakes-in-relation-to-allcause-and-causespecific-mortality-in-us-adults-an-isoenergetic-substitution-analysis-from-the-american-national-health-and-nutrition-examination-survey-linked-to-the-us-mortality-registry/925D760D572A2DADC9ACDD48910053BB
851Huth, P. J., Fulgoni, V. L., Keast, D. R., Park, K. and Auestad, N. (2013). Major food sources of calories, added sugars, and saturated fat and their contribution to essential nutrient intakes in the US diet: Data from the National Health and Nutrition Examination Survey (2003–2006). Nutrition Journal, 12(1), 116. link.springer.com/article/10.1186/1475-2891-12-116
852Buil-Cosiales, P. et al. (2014). Fiber intake and all-cause mortality in the Prevención con Dieta Mediterránea (PREDIMED) study. American Journal of Clinical Nutrition, 100(6), 1498–507.academic.oup.com/ajcn/article-abstract/100/6/1498/4576553
853Liu, L., Wang, S. and Liu, J. (2015). Fiber consumption and all‐cause, cardiovascular, and cancer mortalities: A systematic review and meta‐analysis of cohort studies. Molecular Nutrition & Food Research, 59(1), 139–46. onlinelibrary.wiley.com/doi/abs/10.1002/mnfr.201400449
854Fayet-Moore, F., Cassettari, T., Tuck, K., McConnell, A. and Petocz, P. (2018). Dietary fibre intake in Australia. Paper I: Associations with demographic, socio-economic, and anthropometric factors. Nutrients, 10(5), 599. www.mdpi.com/2072-6643/10/5/599
855Aune, D. et al. (2017). Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality: A systematic review and dose-response meta-analysis of prospective studies. International Journal of Epidemiology, 46(3), 1029–56. academic.oup.com/ije/article-abstract/46/3/1029/3039477
856Bao, Y., Han, J., Hu, F. B., Giovannucci, E. L., Stampfer, M. J., Willett, W. C. and Fuchs, C. S. (2013). Association of nut consumption with total and cause-specific mortality. New England Journal of Medicine, 369(21), 2001–11. www.nejm.org/doi/full/10.1056/NEJMoa1307352
857Eslamparast, T. et al. (2017). Nut consumption and total and cause-specific mortality: Results from the Golestan Cohort Study. International Journal of Epidemiology, 46(1), 75–85. academic.oup.com/ije/article-abstract/46/1/75/2617152
858Hshieh, T. T., Petrone, A. B., Gaziano, J. M. and Djoussé, L. (2015). Nut consumption and risk of mortality in the Physicians’ Health Study. American Journal of Clinical Nutrition, 101(2), 407–12. academic.oup.com/ajcn/article-abstract/101/2/407/4494398
859Guasch-Ferré, M. et al. (2013). Frequency of nut consumption and mortality risk in the PREDIMED nutrition intervention trial. BMC Medicine, 11(1), 1–11. bmcmedicine.biomedcentral.com/articles/10.1186/1741-7015-11-164
860Luo, C. et al. (2014). Nut consumption and risk of type 2 diabetes, cardiovascular disease, and all-cause mortality: A systematic review and meta-analysis. American Journal of Clinical Nutrition, 100(1), 256–69. academic.oup.com/ajcn/article-abstract/100/1/256/4576536
861Jackson, C. L. and Hu, F. B. (2014). Long-term associations of nut consumption with body weight and obesity. American Journal of Clinical Nutrition, 100(suppl_1), 408S–11S. academic.oup.com/ajcn/article-abstract/100/suppl_1/408S/4576543
862Meng, X., Li, Y., Li, S., Zhou, Y., Gan, R. Y., Xu, D. P. and Li, H. B. (2017). Dietary sources and bioactivities of melatonin. Nutrients, 9(4), 367. www.mdpi.com/2072-6643/9/4/367
863Yin, J. et al. (2017). Relationship of sleep duration with all‐cause mortality and cardiovascular events: A systematic review and dose-response meta‐analysis of prospective cohort studies. Journal of the American Heart Association, 6(9), e005947. www.ahajournals.org/doi/abs/10.1161/JAHA.117.005947
864Poole, R., Kennedy, O. J., Roderick, P., Fallowfield, J. A., Hayes, P. C. and Parkes, J. (2017). Coffee consumption and health: Umbrella review of meta-analyses of multiple health outcomes. BMJ, 359, j5024. www.bmj.com/content/359/bmj.j5024
865Crippa, A., Discacciati, A., Larsson, S. C., Wolk, A. and Orsini, N. (2014). Coffee consumption and mortality from all causes, cardiovascular disease, and cancer: A dose-response meta-analysis. American Journal of Epidemiology, 180(8), 763–75. academic.oup.com/aje/article-abstract/180/8/763/2739131
866Carlsen, M. H. et al. (2010). The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutrition Journal, 9(1), 3. link.springer.com/article/10.1186/1475-2891-9-3
867Pietrocola, F. et al. (2014). Coffee induces autophagy in vivo. Cell Cycle, 13(12), 1987–94. www.tandfonline.com/doi/abs/10.4161/cc.28929
868Prasanth, M. I., Sivamaruthi, B. S., Chaiyasut, C. and Tencomnao, T. (2019). A review of the role of green tea (Camellia sinensis) in antiphotoaging, stress resistance, neuroprotection, and autophagy. Nutrients, 11(2), 474. www.mdpi.com/2072-6643/11/2/474
869Shakeri, A., Cicero, A. F., Panahi, Y., Mohajeri, M. and Sahebkar, A. (2019). Curcumin: A naturally occurring autophagy modulator. Journal of Cellular Physiology, 234(5), 5643–54.onlinelibrary.wiley.com/doi/abs/10.1002/jcp.27404
870Shoba, G., Joy, D., Joseph, T., Majeed, M., Rajendran, R. and Srinivas, P. S. (1998). Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Medica, 64(4), 353–6. pubmed.ncbi.nlm.nih.gov/9619120
871Kalpravidh, R. W. et al. (2010). Improvement in oxidative stress and antioxidant parameters in β-thalassemia/Hb E patients treated with curcuminoids. Clinical Biochemistry, 43(4–5), 424–9. www.sciencedirect.com/science/article/pii/S0009912009005074
872Biswas, J., Sinha, D., Mukherjee, S., Roy, S., Siddiqi, M. and Roy, M. (2010). Curcumin protects DNA damage in a chronically arsenic-exposed population of West Bengal. Human & Experimental Toxicology, 29(6), 513–24. journals.sagepub.com/doi/abs/10.1177/0960327109359020
873Jiménez-Osorio, A. S. et al. (2016). The effect of dietary supplementation with curcumin on redox status and Nrf2 activation in patients with nondiabetic or diabetic proteinuric chronic kidney disease: A pilot study. Journal of Renal Nutrition, 26(4), 237–44. www.sciencedirect.com/science/article/pii/S1051227616000145
874Amalraj, A., Varma, K., Jacob, J., Divya, C., Kunnumakkara, A. B., Stohs, S. J. and Gopi, S. (2017). A novel highly bioavailable curcumin formulation improves symptoms and diagnostic indicators in rheumatoid arthritis patients: A randomized, double-blind, placebo-controlled, two-dose, three-arm, and parallel-group study. Journal of Medicinal Food, 20(10), 1022–30.www.liebertpub.com/doi/abs/10.1089/jmf.2017.3930
875Buettner, D. (2010). The Blue Zones: Lessons for living longer from the people who’ve lived the longest. National Geographic Books, Washington, D.C. www.hachette.com.au/dan-buettner/the-blue-zones
876Buettner, D. and Skemp, S. (2016). Blue Zones: Lessons from the world’s longest lived. American Journal of Lifestyle Medicine, 10(5), 318–21. journals.sagepub.com/doi/abs/10.1177/1559827616637066
877Woo, J. et al. (2001). The Mediterranean score of dietary habits in Chinese populations in four different geographical areas. European Journal of Clinical Nutrition, 55(3), 215–20. www.nature.com/articles/1601150
878Kong, X. et al. (2015). Overview of the health care system in Hong Kong and its referential significance to mainland China. Journal of the Chinese Medical Association, 78(10), 569–73. www.sciencedirect.com/science/article/pii/S1726490115001458
879Senthilingam, M. (2018). This urban population is leading the world in life expectancy. CNN. 3 March 2018. www.cnn.com/2018/03/02/health/hong-kong-world-longest-life-expectancy-longevity-intl/index.html
880Chan, R., Yu, B., Leung, J., Lee, J., Auyeung, T. W., Kwok, T. and Woo, J. (2019). How dietary patterns are related to inflammaging and mortality in community-dwelling older Chinese adults in Hong Kong: A prospective analysis. Journal of Nutrition, Health and Aging, 23(2), 181–94. pubmed.ncbi.nlm.nih.gov/30697629
881ecyY. Meat consumption growth in Hong Kong is alarming. Medium. 19 May 2019.ecyy.medium.com/meat-consumption-growth-in-hong-kong-is-alarming-872e46bf40ca
882World Cancer Research Fund, American Institute for Cancer Research. (2018). Colorectal cancer statistics. WCRF. www.wcrf.org/dietandcancer/cancer-trends/colorectal-cancer-statistics
883Centre for Health Protection, Department of Health, Government of Hong Kong. Colorectal Cancer. 20 May 2020. Centre for Health Protection. www.chp.gov.hk/en/healthtopics/content/25/51.html
884Artaud-Wild, S. M., Connor, S. L., Sexton, G. and Connor, W. E. (1993). Differences in coronary mortality can be explained by differences in cholesterol and saturated fat intakes in 40 countries but not in France and Finland. A paradox. Circulation, 88(6), 2771–9. pubmed.ncbi.nlm.nih.gov/8252690
885Law, M. and Wald, N. (1999). Why heart disease mortality is low in France: The time lag explanation. BMJ (Clinical Research Ed.), 318(7196), 1471–6. www.ncbi.nlm.nih.gov/pmc/articles/PMC1115846
886Nestle, M. (1992). Wine and coronary heart disease. The Lancet, 340(8814), 314–15. pubmed.ncbi.nlm.nih.gov/1353235
887Key, T. J. et al. (1999). Mortality in vegetarians and nonvegetarians: Detailed findings from a collaborative analysis of 5 prospective studies. American Journal of Clinical Nutrition, 70(3), 516s–24s. academic.oup.com/ajcn/article-abstract/70/3/516s/4714974
888Huang, T., Yang, B., Zheng, J., Li, G., Wahlqvist, M. L. and Li, D. (2012). Cardiovascular disease mortality and cancer incidence in vegetarians: A meta-analysis and systematic review. Annals of Nutrition and Metabolism, 60(4), 233–40. www.karger.com/Article/FullText/337301
889Dinu, M., Abbate, R., Gensini, G. F., Casini, A. and Sofi, F. (2017). Vegetarian, vegan diets and multiple health outcomes: A systematic review with meta-analysis of observational studies. Critical Reviews in Food Science and Nutrition, 57(17), 3640–9. www.tandfonline.com/doi/abs/10.1080/10408398.2016.1138447
890Appleby, P. N., Crowe, F. L., Bradbury, K. E., Travis, R. C. and Key, T. J. (2016). Mortality in vegetarians and comparable nonvegetarians in the United Kingdom. American Journal of Clinical Nutrition, 103(1), 218–30.academic.oup.com/ajcn/article-abstract/103/1/218/4569305
891Kim, H., Caulfield, L. E. and Rebholz, C. M. (2018). Healthy plant-based diets are associated with lower risk of all-cause mortality in US adults. Journal of Nutrition, 148(4), 624–31. academic.oup.com/jn/article-abstract/148/4/624/4965931
892Fraser, G. E. (2003). Diet, Life Expectancy, and Chronic Disease: Studies of Seventh-day Adventists and other vegetarians. Oxford University Press, New York. www.oup.com.au/books/others/9780195113242-diet,-life-expectancy,-and-chronic-disease
893Fraser, G. E. and Shavlik, D. J. (2001). Ten years of life: Is it a matter of choice? Archives of Internal Medicine, 161(13), 1645–52. jamanetwork.com/journals/jamainternalmedicine/article-abstract/648593
894Singh, P. N., Sabaté, J. and Fraser, G. E. (2003). Does low meat consumption increase life expectancy in humans? American Journal of Clinical Nutrition, 78(3), 526S–32S. academic.oup.com/ajcn/article/78/3/526S/4689992
895Shan, Z., Guo, Y., Hu, F. B., Liu, L. and Qi, Q. (2020). Association of low-carbohydrate and low-fat diets with mortality among US adults. JAMA Internal Medicine, 180(4), 513–23. jamanetwork.com/journals/jamainternalmedicine/article-abstract/2759134
896Seidelmann, S. B. et al. (2018). Dietary carbohydrate intake and mortality: A prospective cohort study and meta-analysis. The Lancet Public Health, 3(9), e419–28. www.sciencedirect.com/science/article/pii/S246826671830135X
897Most, J., Tosti, V., Redman, L. M. and Fontana, L. (2017). Calorie restriction in humans: An update. Ageing Research Reviews, 39, 36–45. www.sciencedirect.com/science/article/pii/S1568163716301830
898McCay, C. M., Crowell, M. F. and Maynard, L. A. (1989). The effect of retarded growth upon the length of life span and upon the ultimate body size – 1935. Nutrition, 5(3), 155–72. pubmed.ncbi.nlm.nih.gov/2520283
899Fontana, L., Partridge, L and Longo, V. D. (2010). Extending healthy life span: From yeast to humans. Science, 328(5976), 321–6. science.sciencemag.org/content/328/5976/321
8100Colman, R. J. et al. (2009). Caloric restriction delays disease onset and mortality in rhesus monkeys. Science, 325(5937), 201–4. science.sciencemag.org/content/325/5937/201
8101Fontana, L. and Partridge, L. (2015). Promoting health and longevity through diet: From model organisms to humans. Cell, 161(1), 106–18. www.sciencedirect.com/science/article/pii/S0092867415001865
8102Trepanowski, J. F. and Bloomer, R. J. (2010). The impact of religious fasting on human health. Nutrition Journal, 9(1), 57. nutritionj.biomedcentral.com/articles/10.1186/1475-2891-9-57
8103Blue Zones. Okinawa, Japan – Secrets of the world’s longest-living women. Blue Zones. www.bluezones.com/exploration/okinawa-japan
8104Willcox, B. J. and Willcox, D. C. (2014). Caloric restriction, CR mimetics, and healthy aging in Okinawa: Controversies and clinical implications. Current Opinion in Clinical Nutrition and Metabolic Care, 17(1), 51. www.ncbi.nlm.nih.gov/pmc/articles/pmc5403510
8105Willcox, B. J. et al. (2007). Caloric restriction, the traditional Okinawan diet, and healthy aging: The diet of the world’s longest‐lived people and its potential impact on morbidity and life span. Annals of the New York Academy of Sciences, 1114(1), 434–55. s.put.re/edWLkDBZ.pdf
8106Di Francesco, A., Di Germanio, C., Bernier, M. and de Cabo, R. (2018). A time to fast. Science, 362(6416), 770–5.science.sciencemag.org/content/362/6416/770
8107Longo, V. D. and Mattson, M. P. (2014). Fasting: Molecular mechanisms and clinical applications. Cell Metabolism, 19(2), 181–92. www.sciencedirect.com/science/article/pii/S1550413113005032
8108de Cabo, R. and Mattson, M. P. (2019). Effects of intermittent fasting on health, aging, and disease. New England Journal of Medicine, 381(26), 2541–51. www.nejm.org/doi/full/10.1056/nejmra1905136
8109Sutton, E. F., Beyl, R., Early, K. S., Cefalu, W. T., Ravussin, E. and Peterson, C. M. (2018). Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell Metabolism, 27(6), 1212–21.www.sciencedirect.com/science/article/pii/S1550413118302535
8110Harvie, M. et al. (2013). The effect of intermittent energy and carbohydrate restriction v. daily energy restriction on weight loss and metabolic disease risk markers in overweight women. British Journal of Nutrition, 110(8), 1534–47. www.cambridge.org/core/journals/british-journal-of-nutrition/article/effect-of-intermittent-energy-and-carbohydrate-restriction-v-daily-energy-restriction-on-weight-loss-and-bolic-disease-risk-markers-in-overweight-women/BC03063A5D8E9446D5090DB083A4B226
8111Mitchell, S. J. et al. (2019). Daily fasting improves health and survival in male mice independent of diet composition and calories. Cell Metabolism, 29(1), 221–8. www.sciencedirect.com/science/article/pii/S1550413118305126
8112Masoro, E. J. (2007). Role of hormesis in life extension by caloric restriction. Dose-Response, 5(2). journals.sagepub.com/doi/abs/10.2203/dose-response.06-005.Masoro
8113Hooper, P. L., Hooper, P. L., Tytell, M. and Vígh, L. (2010). Xenohormesis: Health benefits from an eon of plant stress response evolution. Cell Stress and Chaperones, 15(6), 761–70.link.springer.com/article/10.1007/s12192-010-0206-x
8114Barański, M. et al. (2014). Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: A systematic literature review and meta-analyses. British Journal of Nutrition, 112(5), 794–811. www.cambridge.org/core/journals/british-journal-of-nutrition/article/higher-antioxidant-and-lower-cadmium-concentrations-and-lower-incidence-of-pesticide-residues-in-organically-grown-crops-a-systematic-literature-review-and-metaanalyses/33F09637EAE6C4ED119E0C4BFFE2D5B1
8115Suter, S. and Lucock, M. (2017). Xenohormesis: Applying evolutionary principles to contemporary health issues. Exploratory Research and Hypothesis in Medicine, 2(4), 79–85. pdfs.semanticscholar.org/bebe/f8f14c1ccfa6f40a7d2cc96f9a4d0661b44f.pdf
8116Saijo, R. and Takeda, Y. (1999). HPLC analysis of catechins in various kinds of green teas produced in Japan and abroad. Journal of the Japanese Society for Food Science and Technology, 46(3), 138–47. www.jstage.jst.go.jp/article/nskkk1995/46/3/46_3_138/_pdf/-char/en
8117Murakami, A. et al. (2005). Suppressive effects of Okinawan food items on free radical generation from stimulated leukocytes and identification of some active constituents: Implications for the prevention of inflammation-associated carcinogenesis. Asian Pacific Journal of Cancer Prevention, 6(4), 437. pubmed.ncbi.nlm.nih.gov/16435988
8118Mattison, J. A. et al. (2012). Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature, 489(7415), 318–21. www.nature.com/articles/nature11432
8119Anton, S. D. et al. (2018). Flipping the metabolic switch: Understanding and applying the health benefits of fasting. Obesity, 26(2), 254–68. onlinelibrary.wiley.com/doi/abs/10.1002/oby.22065
8120Blackburn, E. and Epel, E. (2017). The Telomere Effect: A revolutionary approach to living younger, healthier, longer. Grand Central Publishing, New York. www.hachette.com.au/elizabeth-blackburn-elissa-epel/the-telomere-effect-a-revolutionary-approach-to-living-younger-healthier-longer
8121Lapham, K. et al. (2015). Automated assay of telomere length measurement and informatics for 100,000 subjects in the genetic epidemiology research on adult health and aging (GERA) cohort. Genetics, 200(4), 1061–72. www.genetics.org/content/200/4/1061
8122Bekaert, S., De Meyer, T. and Van Oostveldt, P. (2005). Telomere attrition as ageing biomarker. Anticancer Research, 25(4), 3011–21. pubmed.ncbi.nlm.nih.gov/16080560
8123Wentzensen, I. M., Mirabello, L., Pfeiffer, R. M. and Savage, S. A. (2011). The association of telomere length and cancer: A meta-analysis. Cancer Epidemiology and Prevention Biomarkers, 20(6), 1238–50. cebp.aacrjournals.org/content/20/6/1238
8124Needham, B. L., Mezuk, B., Bareis, N., Lin, J., Blackburn, E. H. and Epel, E. S. (2015). Depression, anxiety and telomere length in young adults: Evidence from the National Health and Nutrition Examination Survey. Molecular Psychiatry, 20(4), 520. www.nature.com/articles/mp201489
8125Haycock, P. C., Heydon, E. E., Kaptoge, S., Butterworth, A. S., Thompson, A. and Willeit, P. (2014). Leucocyte telomere length and risk of cardiovascular disease: Systematic review and meta-analysis. BMJ, 349, g4227. www.bmj.com/content/349/bmj.g4227
8126Forero, D. A., González-Giraldo, Y., López-Quintero, C., Castro-Vega, L. J., Barreto, G. E. and Perry, G. (2016). Meta-analysis of telomere length in Alzheimer’s disease. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 71(8), 1069–73.academic.oup.com/biomedgerontology/article-abstract/71/8/1069/2465837
8127Boccardi, V., Esposito, A., Rizzo, M. R., Marfella, R., Barbieri, M. and Paolisso, G. (2013). Mediterranean diet, telomere maintenance and health status among elderly. PLOS One, 8(4), e62781. journals.plos.org/plosone/article?id=10.1371/journal.pone.0062781
8128Crous-Bou, M. et al. (2014). Mediterranean diet and telomere length in Nurses’ Health Study: Population based cohort study. BMJ, 349, g6674. www.bmj.com/content/349/bmj.g6674
8129Lee, J. Y., Jun, N. R., Yoon, D., Shin, C. and Baik, I. (2015). Association between dietary patterns in the remote past and telomere length. European Journal of Clinical Nutrition, 69(9), 1048–52.www.nature.com/articles/ejcn201558
8130Puterman, E., Lin, J., Blackburn, E., O’Donovan, A., Adler, N. and Epel, E. (2010). The power of exercise: Buffering the effect of chronic stress on telomere length. PLOS One, 5(5), e10837. journals.plos.org/plosone/article?id=10.1371/journal.pone.0010837
8131Barry, V. W., Baruth, M., Beets, M. W., Durstine, J. L., Liu, J. and Blair, S. N. (2014). Fitness vs. fatness on all-cause mortality: A meta-analysis. Progress in Cardiovascular Diseases, 56(4), 382–90. www.sciencedirect.com/science/article/pii/S0033062013001552
91Whitmee, S. et al. (2015). Safeguarding human health in the Anthropocene epoch: Report of The Rockefeller Foundation–Lancet Commission on planetary health. The Lancet, 386(10007), 1973–2028. www.thelancet.com/journals/lancet/article/PIIS0140-6736(15)60901-1
92Roser, M., Ortiz-Ospina, E. and Ritchie, H. (2019). Life expectancy. Our World in Data. ourworldindata.org/life-expectancy
93The World Bank. (2020). Poverty – overview. The World Bank, Washington, D.C. www.worldbank.org/en/topic/poverty/overview
94Roser, M. and Ortiz-Ospina, E. (2016). Global education. Our World in Data. ourworldindata.org/global-education
95European Environment Agency. (2007). How is climate changing and how has it changed in the past? European Environment Agency.www.eea.europa.eu/themes/climate/faq/how-is-climate-changing-and-how-has-it-changed-in-the-past
96Raphaely, T. and Marinova, D. (2014). Flexitarianism: Decarbonising through flexible vegetarianism. Renewable Energy, 67, 90–6. www.sciencedirect.com/science/article/pii/S0960148113006083
97Cleveland, D. A. and Gee, Q. (2017). Plant-based diets for mitigating climate change. In Mariotti, F. (ed.) Vegetarian and Plant-Based Diets in Health and Disease Prevention. Academic Press, London, 135–56. www.medicosadventistas.org/wp-content/uploads/2018/09/Fran%C3%A7ois-Mariotti-Eds.-Vegetarian-and-Plant-Based-Diets-in-Health-and-Disease-Prevention-Academic-Press-2017.pdf
98De Ron, A. M., Sparvoli, F., Pueyo, J. J. and Bazile, D. (2017). Protein crops: Food and feed for the future. Frontiers in Plant Science, 8, 105. www.frontiersin.org/articles/10.3389/fpls.2017.00105
99Hawken, P. The Drawdown Review. Project Drawdown, San Francisco. www.drawdown.org/drawdown-review
910Willett, W. et al. (2019). Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. The Lancet, 393(10170), 447–92. www.thelancet.com/journals/lancet/article/PIIS0140-6736(18)31788-4
911EAT. Healthy diets from sustainable food systems: Food Planet Health: Summary report of the EAT-Lancet Commission.eatforum.org/content/uploads/2019/07/EAT-Lancet_Commission_Summary_Report.pdf
912Semba, R. D., de Pee, S., Kim, B., McKenzie, S., Nachman, K. and Bloem, M. W. (2020). Adoption of the ‘planetary health diet’ has different impacts on countries’ greenhouse gas emissions. Nature Food, 1(8), 481–4. www.nature.com/articles/s43016-020-0128-4
913Springmann, M., Godfray, H. C. J., Rayner, M. and Scarborough, P. (2016). Analysis and valuation of the health and climate change cobenefits of dietary change. Proceedings of the National Academy of Sciences, 113(15), 4146–51. www.pnas.org/content/113/15/4146
914UN Environment Programme. Improved climate action on food systems can deliver 20 percent of global emissions reductions needed by 2050. UN Environment Programme. 1 September 2020.www.unenvironment.org/news-and-stories/press-release/improved-climate-action-food-systems-can-deliver-20-percent-global
915Chai, B. C., van der Voort, J. R., Grofelnik, K., Eliasdottir, H. G., Klöss, I. and Perez-Cueto, F. J. (2019). Which diet has the least environmental impact on our planet? A systematic review of vegan, vegetarian and omnivorous diets. Sustainability, 11(15), 4110. www.mdpi.com/2071-1050/11/15/4110
916Watts, N. et al. (2018). The 2018 report of the Lancet Countdown on health and climate change: Shaping the health of nations for centuries to come. The Lancet, 392(10163), 2479–514. www.thelancet.com/journals/lancet/article/PIIS0140-6736(18)32594-7
917Kaplan, J. O., Krumhardt, K. M., Ellis, E. C., Ruddiman, W. F., Lemmen, C. and Goldewijk, K. K. (2011). Holocene carbon emissions as a result of anthropogenic land cover change. The Holocene, 21(5), 775–91. journals.sagepub.com/doi/abs/10.1177/0959683610386983
918Leifeld, J. (2006). Soils as sources and sinks of greenhouse gases. Geological Society London Special Publications, 266(1), 23–44. www.researchgate.net/publication/249551945_Soils_as_sources_and_sinks_of_greenhouse_gases
919Lemmen, C. (2009). World distribution of land cover changes during pre- and protohistoric times and estimation of induced carbon releases. Géomorphologie: Relief, processus, environnement, 15(4), 303–12. journals.openedition.org/geomorphologie/7756
920Ruddiman, W. F. (2003). The anthropogenic greenhouse era began thousands of years ago. Climatic Change, 61(3), 261–93. link.springer.com/article/10.1023/B:CLIM.0000004577.17928.fa
921Ritchie, H. and Roser, M. (2020). CO₂ and greenhouse gas emissions. Our World in Data. ourworldindata.org/co2-and-other-greenhouse-gas-emissions
922Borunda, A. Methane, explained. National Geographic. 23 January 2019. www.nationalgeographic.com/environment/global-warming/methane
923Food and Agriculture Organization of the United Nations. Key facts and findings: By the numbers: GHG emissions by livestock. FAO.www.fao.org/news/story/en/item/197623/icode
924Lindsey, R. (2020). Climate change: Atmospheric carbon dioxide. Climate.gov. www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide
925Grossi, G., Goglio, P., Vitali, A. and Williams, A. G. (2019). Livestock and climate change: Impact of livestock on climate and mitigation strategies. Animal Frontiers, 9(1), 69–76. academic.oup.com/af/article-abstract/9/1/69/5173494
926Ritchie, H. and Roser, M. (2020). Atmospheric concentrations. Our World in Data. ourworldindata.org/atmospheric-concentrations
927United States Environmental Protection Agency. Greenhouse gas emissions: Understanding global warming potentials.www.epa.gov/ghgemissions/understanding-global-warming-potentials
928Schurer, A. P., Mann, M. E., Hawkins, E., Tett, S. F. and Hegerl, G. C. (2017). Importance of the pre-industrial baseline for likelihood of exceeding Paris goals. Nature Climate Change, 7(8), 563–7.www.nature.com/articles/nclimate3345
929Intergovernmental Panel on Climate Change. (2019). Global warming of 1.5°C: Summary for policymakers, technical summary and frequently asked questions. IPCC, Geneva. www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Summary_Volume_Low_Res.pdf
930Buis, A. A degree of concern: Why global temperatures matter. NASA: Global Climate Change. climate.nasa.gov/news/2865/a-degree-of-concern-why-global-temperatures-matter
931NASA Science. Venus. NASA Science: Solar system exploration.solarsystem.nasa.gov/planets/venus/overview
932Intergovernmental Panel on Climate Change. Special report: Global warming of 1.5°C. IPCC, Geneva. www.ipcc.ch/sr15
933Reuters Staff. Global temperatures on track for 3–5 degree rise by 2100: U.N. Reuters. 29 November 2018.www.reuters.com/article/us-climate-change-un-idUSKCN1NY186
934Spratt, D. and Dunlop, I. (2018). What Lies Beneath: The understatement of existential climate risk. Breakthrough: National Centre for Climate Restoration, Melbourne. climateextremes.org.au/wp-content/uploads/2018/08/What-Lies-Beneath-V3-LR-Blank5b15d.pdf
935Toensmeier, E. et al. (2020). Farming our way out of the climate crisis: Changing our land use, agricultural practices, and food system offers numerous opportunities to reduce greenhouse gas emissions, sequester atmospheric carbon, and help address climate change. Project Drawdown, San Francisco. drawdown.org/sites/default/files/pdfs/DrawdownPrimer_FoodAgLandUse_Dec2020_01b.pdf
936Intergovernmental Panel on Climate Change. (2014). Climate Change 2014: Synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Core writing team Pachauri, R.K. and Meyer, L.A. (eds). IPCC, Geneva. www.ipcc.ch/site/assets/uploads/2018/02/SYR_AR5_FINAL_full.pdf
937Harwatt, H. (2019). Including animal to plant protein shifts in climate change mitigation policy: A proposed three-step strategy. Climate Policy, 19(5), 533–41. www.tandfonline.com/doi/abs/10.1080/14693062.2018.1528965
938Levin, K. and Davis, C. What does ‘net-zero emissions’ mean? 6 common questions, answered. World Resources Institute. 17 September 2019. www.wri.org/blog/2019/09/what-does-net-zero-emissions-mean-6-common-questions-answered
939Cozzi, L. and Gould, T. What would it take to limit the global temperature rise to 1.5°C? IEA. 17 November 2019.www.iea.org/commentaries/what-would-it-take-to-limit-the-global-temperature-rise-to-15c
940Intergovernmental Panel on Climate Change. (2019). Summary for policymakers. In: Climate Change and Land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. IPCC, Geneva. www.ipcc.ch/site/assets/uploads/sites/4/2020/02/SPM_Updated-Jan20.pdf
941Smith, P. et al. (2014). Agriculture, forestry and other land use (AFOLU). In Edenhofer, O. et al (eds) Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York. www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_chapter11.pdf
942Livestock, Environment and Development (LEAD) Initiative and Food and Agriculture Organization of the United Nations (FAO). (2006). Livestock’s Long Shadow: Environmental issues and options. Food and Agriculture Organization of the United Nations (FAO), Rome. www.fao.org/3/a0701e/a0701e.pdf
943The Economist – Graphic Detail. Counting chickens: Where the world’s livestock lives. The Economist. 27 July 2011.stage.economist.com/graphic-detail/2011/07/27/counting-chickens
944Garnett, T. et al. (2017). Grazed and Confused? Ruminating on cattle, grazing systems, methane, nitrous oxide, the soil carbon sequestration question – and what it all means for greenhouse gas emissions. Food Climate Research Network, University of Oxford. www.tabledebates.org/sites/default/files/2020-10/fcrn_gnc_report.pdf
945Garnett, T. Why eating grass-fed beef isn’t going to help fight climate change. The Conversation. 3 October 2017. theconversation.com/why-eating-grass-fed-beef-isnt-going-to-help-fight-climate-change-84237
946Shindell, D. et al. (2012). Simultaneously mitigating near-term climate change and improving human health and food security. Science, 335(6065), 183–9. science.sciencemag.org/content/335/6065/183
947Risku-Norja, H., Kurppa, S. and Helenius, J. (2009). Dietary choices and greenhouse gas emissions – assessment of impact of vegetarian and organic options at national scale. Progress in Industrial Ecology, an International Journal, 6(4), 340–54. www.inderscienceonline.com/doi/abs/10.1504/PIE.2009.032323
948Scarborough, P., Appleby, P. N., Mizdrak, A., Briggs, A. D., Travis, R. C., Bradbury, K. E. and Key, T. J. (2014). Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the UK. Climatic Change, 125(2), 179–92. link.springer.com/article/10.1007/s10584-014-1169-1
949Poore, J. and Nemecek, T. (2018). Reducing food’s environmental impacts through producers and consumers. Science, 360(6392), 987–92. science.sciencemag.org/content/360/6392/987
950Ritchie, H. (2020). You want to reduce the carbon footprint of your food? Focus on what you eat, not whether your food is local. Our World in Data. ourworldindata.org/food-choice-vs-eating-local
951Ritchie, H. (2017). Is organic really better for the environment than conventional agriculture? Our World in Data. ourworldindata.org/is-organic-agriculture-better-for-the-environment
952Kim, B. F. et al. (2020). Country-specific dietary shifts to mitigate climate and water crises. Global Environmental Change, 62, 101926. www.sciencedirect.com/science/article/pii/S0959378018306101
953Pieper, M., Michalke, A. and Gaugler, T. (2020). Calculation of external climate costs for food highlights inadequate pricing of animal products. Nature Communications, 11(1), 1–13. www.nature.com/articles/s41467-020-19474-6
954Poore, J. and Nemecek, T. (2018). Additional calculations by Our World in Data. Greenhouse gas emissions per 100 grams of protein. Our World in Data. ourworldindata.org/grapher/ghg-per-protein-poore
955Godfray, H. C. J. et al. (2018). Meat consumption, health, and the environment. Science, 361(6399). science.sciencemag.org/content/361/6399/eaam5324
956Sakadevan, K. and Nguyen, M. L. (2017). Livestock production and its impact on nutrient pollution and greenhouse gas emissions. Advances in Agronomy, 141, 147–84. www.sciencedirect.com/science/article/pii/S0065211316301080
957Nordborg, M. (2016). Holistic management – a critical review of Allan Savory’s grazing method. SLU/EPOK – Centre for Organic Food & Farming and Chalmers. www.researchgate.net/publication/309589057_Holistic_management_-_a_critical_review_of_Allan_Savory's_grazing_method
958Hayek, M. N. and Garrett, R. D. (2018). Nationwide shift to grass-fed beef requires larger cattle population. Environmental Research Letters, 13(8), 084005. iopscience.iop.org/article/10.1088/1748-9326/aad401
959Hill, S and Carter, N. (2021). Can holistic grazing reverse climate change? A review of Kiss the Ground. Plant Proof. plantproof.com/can-holistic-grazing-reverse-climate-change
960Ritchie, H. and Roser, M. (2020). Environmental impacts of food production. Our World in Data. ourworldindata.org/environmental-impacts-of-food
961Searchinger, T. D., Wirsenius, S., Beringer, T. and Dumas, P. (2019). Publisher correction: Assessing the efficiency of changes in land use for mitigating climate change. Nature, 565(7740), E9.www.nature.com/articles/s41586-018-0863-y
962Daryanto, S., Eldridge, D. J. and Throop, H. L. (2013). Managing semi-arid woodlands for carbon storage: Grazing and shrub effects on above- and belowground carbon. Agriculture, Ecosystems & Environment, 169, 1–11. www.sciencedirect.com/science/article/pii/S0167880913000285
963Hayek, M. N. (2019). Underestimates of US emissions and global implications for industrializing animal agriculture: A guidance memo for the Tiny Beam Fund. www.issuelab.org/resources/36458/36458.pdf
964Harwatt, H., Ripple, W. J., Chaudhary, A., Betts, M. G. and Hayek, M. N. (2020). Scientists call for renewed Paris pledges to transform agriculture. The Lancet Planetary Health, 4(1), e9–10.www.thelancet.com/journals/lanplh/article/PIIS2542-5196(19)30245-1
965Minnemeyer, S., Harris, N. and Payne, O. Conserving forests could cut carbon emissions as much as getting rid of every car on Earth. World Resources Institute. 27 November 2017. www.wri.org/blog/2017/11/conserving-forests-could-cut-carbon-emissions-much-getting-rid-every-car-earth
966Cox, L. Beef industry linked to 94% of land clearing in Great Barrier Reef catchments. Guardian Australia. 8 August 2019. www.theguardian.com/australia-news/2019/aug/08/beef-industry-linked-to-94-of-land-clearing-in-great-barrier-reef-catchments
967Griscom, B. W. et al. (2017). Natural climate solutions. Proceedings of the National Academy of Sciences, 114(44), 11645–50. www.pnas.org/content/114/44/11645
968Australia’s Chief Scientist. Which plants store more carbon in Australia: Forests or grasses? Australian Government, Canberra. 1 December 2009. www.chiefscientist.gov.au/2009/12/which-plants-store-more-carbon-in-australia-forests-or-grasses
969Ritchie, H. and Roser, M. (2020). Environmental impacts of food production: Land Use. Our World in Data. ourworldindata.org/environmental-impacts-of-food#land-use
970Tubiello, F. N., Salvatore, M., Rossi, S., Ferrara, A., Fitton, N. and Smith, P. (2013). The FAOSTAT database of greenhouse gas emissions from agriculture. Environmental Research Letters, 8(1), 015009. iopscience.iop.org/article/10.1088/1748-9326/8/1/015009
971Food and Agriculture Organization of the United Nations. Livestock primary. FAOSTAT.www.fao.org/faostat/en/#data/QL
972Bar-On, Y. M., Phillips, R. and Milo, R. (2018). The biomass distribution on Earth. Proceedings of the National Academy of Sciences, 115(25), 6506–11. www.pnas.org/content/115/25/6506
973Hempson, G. P., Archibald, S. and Bond, W. J. (2017). The consequences of replacing wildlife with livestock in Africa. Scientific Reports, 7(1), 1–10. www.nature.com/articles/s41598-017-17348-4
974Bakker, E. S. and Svenning, J. C. (2018). Trophic rewilding: Impact on ecosystems under global change. Philosophical Transactions of the Royal Society B: Biological Sciences, 373, 20170432. royalsocietypublishing.org/doi/full/10.1098/rstb.2017.0432
975Cromsigt, J. P., te Beest, M., Kerley, G. I., Landman, M., le Roux, E. and Smith, F. A. (2018). Trophic rewilding as a climate change mitigation strategy? Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1761), 20170440. royalsocietypublishing.org/doi/abs/10.1098/rstb.2017.0440
976Vandette, K. Trophic rewilding may be an effective tool to fight climate change. Earth.com News. 23 October 2018. www.earth.com/news/trophic-rewilding-climate-change
977Tilman, D., Clark, M., Williams, D. R., Kimmel, K., Polasky, S. and Packer, C. (2017). Future threats to biodiversity and pathways to their prevention. Nature, 546(7656), 73–81. www.nature.com/articles/nature22900
978Loken, B. et al. (2020). Bending the Curve: The restorative power of planet-based diets. WWF, Gland. wwfeu.awsassets.panda.org/downloads/bending_the_curve__the_restorative_power_of_planet_based_diets_full_report_final_pdf.pdf
979Rewilding Britain. (2019). Rewilding and climate breakdown: How restoring nature can help decarbonise the UK. Rewilding Britain.www.rewildingbritain.org.uk/support-rewilding/our-campaigns-and-issues/rewilding-vs-climate-breakdown
980Department of Industry, Science, Energy and Resources. Australia’s climate change strategies. Australian Government, Canberra. www.industry.gov.au/strategies-for-the-future/australias-climate-change-strategies
981Crowther, T. W. et al. (2015). Mapping tree density at a global scale. Nature, 525(7568), 201–5. www.nature.com/articles/nature14967
982Machovina, B., Feeley, K. J. and Ripple, W. J. (2015). Biodiversity conservation: The key is reducing meat consumption. Science of the Total Environment, 536, 419–31. www.sciencedirect.com/science/article/pii/S0048969715303697
983Ritchie, H. Drivers of deforestation: Is palm oil responsible for deforestation? Our World in Data. Ritchie, H. Drivers of deforestation: Is palm oil responsible for deforestation? Our World in Data.
984WWF. (2014). The growth of soy: Impacts and solutions. WWF International, Gland. wwfeu.awsassets.panda.org/downloads/wwf_soy_report_final_feb_4_2014.pdf
985Ritchie, H. Soy. Our World in Data. ourworldindata.org/soy
986Borunda, A. The science connecting wildfires to climate change. National Geographic. 17 September 2020. www.nationalgeographic.com/science/2020/09/climate-change-increases-risk-fires-western-us
987Phillips, N. Climate change made Australia’s devastating fire season 30% more likely. Nature. 4 March 2020. www.nature.com/articles/d41586-020-00627-y
988Wood, J. Costa Rica has doubled its tropical rainforests in just a few decades. Here’s how. World Economic Forum. 13 June 2019. www.weforum.org/agenda/2019/06/costa-rica-has-doubled-its-tropical-rainforests-in-just-a-few-decades-here-s-how
989Lutz, S. J., Pearson, H., Vatter, J. and Bhakta, D. (2018). Oceanic Blue Carbon: How marine life can help to combat climate change. GRID-Arendal. grid-arendal.maps.arcgis.com/apps/Cascade/index.html?appid=05f6dc47c20a41d8a0df68c0c99cc2f2
990GRID-Arendal. Fish carbon: Exploring marine vertebrate carbon services. 6 November 2014.www.grida.no/publications/172
991Lavery, T. J. et al. (2010). Iron defecation by sperm whales stimulates carbon export in the Southern Ocean. Proceedings of the Royal Society B: Biological Sciences, 277(1699), 3527–31.royalsocietypublishing.org/doi/abs/10.1098/rspb.2010.0863
992Pershing, A. J., Christensen, L. B., Record, N. R., Sherwood, G. D. and Stetson, P. B. (2010). The impact of whaling on the ocean carbon cycle: Why bigger was better. PLOS One, 5(8), e12444.journals.plos.org/plosone/article?id=10.1371/journal.pone.0012444
993Wilmers, C. C., Estes, J. A., Edwards, M., Laidre, K. L. and Konar, B. (2012). Do trophic cascades affect the storage and flux of atmospheric carbon? An analysis of sea otters and kelp forests. Frontiers in Ecology and the Environment, 10(8), 409–15. esajournals.onlinelibrary.wiley.com/doi/abs/10.1890/110176
994Davison, P. C., Checkley Jr, D. M., Koslow, J. A. and Barlow, J. (2013). Carbon export mediated by mesopelagic fishes in the northeast Pacific Ocean. Progress in Oceanography, 116, 14–30. www.sciencedirect.com/science/article/pii/S0079661113000554
995Parker, L. The Great Pacific Garbage Patch isn’t what you think it is. National Geographic. 22 March 2018. www.nationalgeographic.com/news/2018/03/great-pacific-garbage-patch-plastics-environment
996Stokstad, E. Fishing fleets have doubled since 1950 – but they’re having a harder time catching fish. Science. 27 May 2019. www.sciencemag.org/news/2019/05/fishing-fleets-have-doubled-1950-theyre-having-harder-time-catching-fish
997Gibbens, S. Less than 3 percent of the ocean is ‘highly protected’. National Geographic. 25 September 2019. www.nationalgeographic.com/environment/2019/09/paper-parks-undermine-marine-protected-areas
998Pusceddu, A., Bianchelli, S., Martín, J., Puig, P., Palanques, A., Masqué, P. and Danovaro, R. (2014). Chronic and intensive bottom trawling impairs deep-sea biodiversity and ecosystem functioning. Proceedings of the National Academy of Sciences, 111(24), 8861–6. www.pnas.org/content/111/24/8861
999Puig, P. et al. (2012). Ploughing the deep sea floor. Nature, 489(7415), 286–9. www.nature.com/articles/nature11410
9100Kituyi, M. and Thomson, P. 90% of fish stocks are used up – fisheries subsidies must stop emptying the ocean. World Economic Forum. 13 July 2018. www.weforum.org/agenda/2018/07/fish-stocks-are-used-up-fisheries-subsidies-must-stop
9101Climate change seeps into the sea. NASA: Jet Propulsion Laboratory: California Institute of Technology.www.jpl.nasa.gov/news/news.php?feature=1912
9102Munday, P. L., Dixson, D. L., McCormick, M. I., Meekan, M., Ferrari, M. C. and Chivers, D. P. (2010). Replenishment of fish populations is threatened by ocean acidification. Proceedings of the National Academy of Sciences, 107(29), 12930–4. www.pnas.org/content/107/29/12930
9103James, L. E. Half of the Great Barrier Reef is dead. National Geographic. August 2018. www.nationalgeographic.com/magazine/2018/08/explore-atlas-great-barrier-reef-coral-bleaching-map-climate-change
9104Prada, F. et al. (2017). Ocean warming and acidification synergistically increase coral mortality. Scientific Reports, 7(1), 1–10. www.nature.com/articles/srep40842
9105Compassion in World Farming. Until the seas run dry: How industrial aquaculture is plundering the oceans. Ecohustler. 17 April 2019.ecohustler.com/article/until-the-seas-run-dry-how-industrial-aquaculture-is-plundering-the-oceans
9106Salyer, S. J., Silver, R., Simone, K. and Barton Behravesh, C. (2017). Prioritizing zoonoses for global health capacity building – Themes from One Health Zoonotic Disease workshops in 7 countries, 2014–2016. Emerging Infectious Diseases, 23(13), S55–64. www.ncbi.nlm.nih.gov/pmc/articles/PMC5711306
9107Daszak, P. et al. (2006). The emergence of Nipah and Hendra virus: Pathogen dynamics across a wildlife-livestock-human continuum. In Collinge, S. K. and Ray, C. Disease Ecology: Community structure and pathogen dynamics. Oxford University Press, Oxford. oxford.universitypressscholarship.com/view/10.1093/acprof:oso/9780198567080.001.0001/acprof-9780198567080-chapter-13
9108Agriculture Victoria. (2021). Hendra virus. Victorian Government Department of Jobs, Precincts and Regions. agriculture.vic.gov.au/biosecurity/animal-diseases/horse-diseases/hendra-virus
9109Reperant, L. A., Kuiken, T. and Osterhaus, A. D. (2012). Influenza viruses: From birds to humans. Human Vaccines & Immunotherapeutics, 8(1), 7–16. www.tandfonline.com/doi/abs/10.4161/hv.8.1.18672
9110Dulaney, M. The next pandemic is coming – and sooner than we think, thanks to changes to the environment. ABC News. 7 June 2020. www.abc.net.au/news/science/2020-06-07/a-matter-of-when-not-if-the-next-pandemic-is-around-the-corner/12313372
9111Jones, B. A. et al. (2013). Zoonosis emergence linked to agricultural intensification and environmental change. Proceedings of the National Academy of Sciences, 110(21), 8399–404. www.pnas.org/content/110/21/8399
9112Weber, C. L. and Matthews, H. S. (2008). Food-miles and the relative climate impacts of food choices in the United States. Environmental Science & Technology, 42, 3508–13. pubs.acs.org/doi/abs/10.1021/es702969f
9113Ritchie, H. (2020). Less meat is nearly always better than sustainable meat, to reduce your carbon footprint. Our World in Data. ourworldindata.org/less-meat-or-sustainable-meat
9114Clune, S., Crossin, E. and Verghese, K. (2017). Systematic review of greenhouse gas emissions for different fresh food categories. Journal of Cleaner Production, 140, 766–83. www.sciencedirect.com/science/article/pii/S0959652616303584
9115Clark, M. and Tilman, D. (2017). Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environmental Research Letters, 12(6), 064016. iopscience.iop.org/article/10.1088/1748-9326/aa6cd5/meta
9116Garcia-Franco, N., Albaladejo, J., Almagro, M. and Martínez-Mena, M. (2015). Beneficial effects of reduced tillage and green manure on soil aggregation and stabilization of organic carbon in a Mediterranean agroecosystem. Soil and Tillage Research, 153, 66–75. www.sciencedirect.com/science/article/pii/S0167198715001130
9117Eisenbach, L. D. et al. (2019). Effect of biocyclic humus soil on yield and quality parameters of processing tomato (Lycopersicon esculentum Mill.). Bulletin UASVM Horticulture, 76(1). www.researchgate.net/publication/333720652_Effect_of_Biocyclic_Humus_Soil_on_Yield_and_Quality_Parameters_of_Processing_Tomato_Lycopersicon_esculentum_Mill
9118Animals Australia. What does free range really mean? Animals Australia. 22 July 2016.animalsaustralia.org/features/what-does-free-range-really-mean.php
9119RSPCA. (2020). What happens with male chicks in the egg industry? RSPCA Knowledgebase.kb.rspca.org.au/knowledge-base/what-happens-with-male-chicks-in-the-egg-industry
9120Stockholm Resilience Centre. The nine planetary boundaries. Stockholm University.www.stockholmresilience.org/research/planetary-boundaries/planetary-boundaries/about-the-research/the-nine-planetary-boundaries.html
9121Voiland, A. Finding new ways to feed the world. NASA Global Climate Change. 12 April 2018. climate.nasa.gov/blog/2711/finding-new-ways-to-feed-the-world
9122Campbell, B. M. et al. (2016). Reducing risks to food security from climate change. Global Food Security, 11, 34–43. www.sciencedirect.com/science/article/pii/S2211912415300262
9123Bongaarts, J. (2019). Special Report on Climate Change and Land Use. Intergovernmental Panel on Climate Change, 2018. Population and Development Review, 45(4), 936–7. onlinelibrary.wiley.com/doi/abs/10.1111/padr.12306
9124Leahy, S. World food crisis looms if carbon emissions go unchecked, UN says. National Geographic. 8 August 2019. www.nationalgeographic.com/environment/2019/08/ipcc-un-food-security
9125World Health Organization. Drinking-water. WHO Newsroom. 14 June 2019.www.who.int/news-room/fact-sheets/detail/drinking-water
9126Foley, J. A five-step plan to feed the world. National Geographic. www.nationalgeographic.com/foodfeatures/feeding-9-billion
9127Cassidy, E. S., West, P. C., Gerber, J. S. and Foley, J. A. (2013). Redefining agricultural yields: From tonnes to people nourished per hectare. Environmental Research Letters, 8(3), 034015. iopscience.iop.org/article/10.1088/1748-9326/8/3/034015
9128World Health Organization. World hunger is still not going down after three years and obesity is still growing – UN report. WHO Newsroom. 15 July 2019.www.who.int/news-room/detail/15-07-2019-world-hunger-is-still-not-going-down-after-three-years-and-obesity-is-still-growing-un-report
9129United Nations Children’s Fund (UNICEF), World Health Organization, International Bank for Reconstruction and Development/The World Bank. (2018). Levels and trends in child malnutrition: Key findings of the 2018 Edition of the Joint Child Malnutrition Estimates. World Health Organization, Geneva. www.who.int/nutgrowthdb/2018-jme-brochure.pdf
9130Food and Agriculture Organization of the United Nations. (2013). Food wastage footprint: Impacts on natural resources: Summary report. FAO.www.fao.org/3/i3347e/i3347e.pdf
9131Ritchie, H. (2020). Food waste is responsible for 6% of global greenhouse gas emissions. Our World in Data. ourworldindata.org/food-waste-emissions
9132Climate Council. (2016). From farm to plate to the atmosphere: Food-related emissions. Climate Council.www.climatecouncil.org.au/from-farm-to-plate-to-the-atmosphere-reducing-your-food-related-emissions
9133United States Environmental Protection Agency. Reducing the impact of wasted food by feeding the soil and composting. EPA.www.epa.gov/sustainable-management-food/reducing-impact-wasted-food-feeding-soil-and-composting
9134Hill, S. (2021). Composting 101. Plant Proof. plantproof.com/composting-101
9135Frankel, T. C. New NASA data show how the world is running out of water. Washington Post. 17 June 2015. www.washingtonpost.com/news/wonk/wp/2015/06/16/new-nasa-studies-show-how-the-world-is-running-out-of-water
9136Hoekstra, A. Y. and Mekonnen, M. M. (2012). The water footprint of humanity. Proceedings of the National Academy of Sciences, 109(9), 3232–7. www.pnas.org/content/109/9/3232
9137Jägerskog, A. and Jønch Clausen, T. (eds). (2012). Feeding a Thirsty World: Challenges and opportunities for a water and food secure future. Report No. 31. SIWI, Stockholm. www.siwi.org/wp-content/uploads/2015/09/Feeding_a_thirsty_world_2012worldwaterweek_report_31.pdf
9138Georgia Pacific Corporation. Water & Forests: The role trees play in water quality. US Forest Service.www.fs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb5269813.pdf
9139Ilstedt, U. et al. (2016). Intermediate tree cover can maximize groundwater recharge in the seasonally dry tropics. Scientific Reports, 6, 21930. www.nature.com/articles/srep21930
9140Ritchie, H. and Roser, M. (2018). Water use and stress. Our World in Data. ourworldindata.org/water-use-stress
9141UN News. World faces ‘climate apartheid’ risk, 120 more million in poverty: UN expert. UN News. 25 June 2019.news.un.org/en/story/2019/06/1041261
9142McDonald, M. How to answer the argument that Australia’s emissions are too small to make a difference. The Conversation. 18 June 2019. theconversation.com/how-to-answer-the-argument-that-australias-emissions-are-too-small-to-make-a-difference-118825
9143Ritchie, H. and Roser, M. (2017). Meat and Dairy Production. Our World in Data. ourworldindata.org/meat-production
9144OECD.Stat. Greenhouse gas emissions. Organisation for Economic Co-Operation and Development.stats.oecd.org/Index.aspx?DataSetCode=AIR_GHG
9145Slezak, M. ‘Global deforestation hotspot’: 3m hectares of Australian forest to be lost in 15 years. Guardian Australia. 5 March 2018. www.theguardian.com/environment/2018/mar/05/global-deforestation-hotspot-3m-hectares-of-australian-forest-to-be-lost-in-15-years
9146Behrens, P., Kiefte-de Jong, J. C., Bosker, T., Rodrigues, J. F., De Koning, A. and Tukker, A. (2017). Evaluating the environmental impacts of dietary recommendations. Proceedings of the National Academy of Sciences, 114(51), 13412–17. www.pnas.org/content/114/51/13412
9147Hutfilter, U. F. et al. (2019). Australia’s vehicle fleet – dirty and falling further behind. Climate Analytics. climateanalytics.org/media/australiaclimatefactsheets2019-transportsector-climateanalytics.pdf
9148Henriques-Gomes, L. Transport emissions continue to rise as Australia lags behind other nations. Guardian Australia. 13 September 2018. www.theguardian.com/environment/2018/sep/13/transport-emissions-continue-to-rise-as-australia-lags-behind-other-nations
9149Climate Analytics. Australia on track to become one of the world’s major climate polluters. Climate Analytics. 8 July 2019.climateanalytics.org/latest/australia-on-track-to-become-one-of-the-worlds-major-climate-polluters
9150Ritchie, H. (2017). How do we reduce antibiotic resistance from livestock? Our World in Data. ourworldindata.org/antibiotic-resistance-from-livestock
9151Van Boeckel, T. P. et al. (2017). Reducing antimicrobial use in food animals. Science, 357(6358), 1350–2. science.sciencemag.org/content/357/6358/1350
9152Van Boeckel, T. P. et al. (2019). Global trends in antimicrobial resistance in animals in low-and middle-income countries. Science, 365(6459), eaaw1944. science.sciencemag.org/content/365/6459/eaaw1944
9153The Review on Antimicrobial Resistance. (2014). Antimicrobial Resistance: Tackling a crisis for the health and wealth of nations. Review on Antimicrobial Resistance.amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf
9154The Review on Antimicrobial Resistance. (2016). Tackling drug-resistant infections globally: Final report and recommendations. Review on Antimicrobial Resistance.amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf
9155World Health Organization. Antibiotic resistance. WHO Newsroom. 31 July 2020.www.who.int/news-room/fact-sheets/detail/antibiotic-resistance
9156World Health Organization. Stop using antibiotics in healthy animals to prevent the spread of antibiotic resistance. WHO Newsroom. 7 November 2017.www.who.int/news-room/detail/07-11-2017-stop-using-antibiotics-in-healthy-animals-to-prevent-the-spread-of-antibiotic-resistance
9157European Academies’ Science Advisory Council, Leopoldina – Nationale Akademie der Wissenschaften. New data confirm increased frequency of extreme weather events. ScienceDaily. 21 March 2018. www.sciencedaily.com/releases/2018/03/180321130859.htm
9158NASA: Global Climate Change. Climate change: How do we know? NASA: Global Climate Change. NASA.climate.nasa.gov/evidence
9159Wynes, S. and Nicholas, K. A. (2017). The climate mitigation gap: Education and government recommendations miss the most effective individual actions. Environmental Research Letters, 12(7), 074024. iopscience.iop.org/article/10.1088/1748-9326/aa7541
9160United Nations. Only 11 years left to prevent irreversible damage from climate change, speakers warn during General Assembly high-level meeting. United Nations Meetings Coverage and Press Releases. 28 March 2019. www.un.org/press/en/2019/ga12131.doc.htm

ChapterReference NumberContentURL
Part 31BDA: The Association of UK Dietitians. (2020). Plant-based diet: Food Fact Sheet. BDA.www.bda.uk.com/resource/plant-based-diet.html
Part 32Melina, V., Craig, W. and Levin, S. (2016). Position of the Academy of Nutrition and Dietetics: Vegetarian diets. Journal of the Academy of Nutrition and Dietetics, 116(12), 1970–80.www.sciencedirect.com/science/article/pii/S2212267216311923
Part 33American Dietetic Association and Dietitians of Canada. (2003). Position of the American Dietetic Association and Dietitians of Canada: Vegetarian diets. Journal of the Academy of Nutrition and Dietetics, 103(6), 748–65. www.sciencedirect.com/science/article/abs/pii/S0002822303002943
Part 34Agnoli, C. et al. (2017). Position paper on vegetarian diets from the working group of the Italian Society of Human Nutrition. Nutrition, Metabolism, and Cardiovascular Diseases, 27(12), 1037–52. pubmed.ncbi.nlm.nih.gov/29174030
Part 35Amit, M., Canadian Paediatric Society and Community Paediatrics Committee. (2010). Vegetarian diets in children and adolescents. Paediatrics & Child Health, 15(5), 303–14. www.cps.ca/documents/position/vegetarian-diets
Part 36National Health and Medical Research Council. (2013). Australian Dietary Guidelines. National Health and Medical Research Council, Canberra. www.eatforhealth.gov.au/sites/default/files/content/n55_australian_dietary_guidelines.pdf
Part 37Simon, M. And now a word from our sponsors: Are America’s nutrition professionals in the pocket of Big Food? Eat Drink Politics. January 2013. www.eatdrinkpolitics.com/wp-content/uploads/AND_Corporate_Sponsorship_Report.pdf
Part 38Cheng, L. J., Jiang, Y., Wu, V. X. and Wang, W. (2020). A systematic review and meta‐analysis: Vinegar consumption on glycaemic control in adults with type 2 diabetes mellitus. Journal of Advanced Nursing, 76(2), 459–74. onlinelibrary.wiley.com/doi/abs/10.1111/jan.14255
101Jenkins, D. J. et al. (2001). Effect of a very-high-fiber vegetable, fruit, and nut diet on serum lipids and colonic function. Metabolism – Clinical and Experimental, 50(4), 494–503. www.metabolismjournal.com/article/S0026-0495(01)08204-X/abstract
102Wang, P. Y., Fang, J. C., Gao, Z. H., Zhang, C. and Xie, S. Y. (2016). Higher intake of fruits, vegetables or their fiber reduces the risk of type 2 diabetes: A meta‐analysis. Journal of Diabetes Investigation, 7(1), 56–69. onlinelibrary.wiley.com/doi/abs/10.1111/jdi.12376
103Australian Bureau of Statistics. 4364.0.55.011 – Australian Health Survey: Consumption of added sugars, 2011–12. ABS. 24 April 2016. www.abs.gov.au/ausstats/abs@.nsf/Lookup/4364.0.55.011main+features12011-12
104Tey, S. L., Salleh, N. B., Henry, J. and Forde, C. G. (2017). Effects of aspartame-, monk fruit-, stevia- and sucrose-sweetened beverages on postprandial glucose, insulin and energy intake. International Journal of Obesity, 41(3), 450. www.nature.com/articles/ijo2016225
105Alcock, J., Maley, C. C. and Aktipis, C. A. (2014). Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms. BioEssays, 36(10), 940–9. onlinelibrary.wiley.com/doi/10.1002/bies.201400071
106Reynolds, A., Mann, J., Cummings, J., Winter, N., Mete, E. and Te Morenga, L. (2019). Carbohydrate quality and human health: A series of systematic reviews and meta-analyses. The Lancet, 393(10170), 434–45. www.sciencedirect.com/science/article/pii/S0140673618318099
107Hollænder, P. L., Ross, A. B. and Kristensen, M. (2015). Whole-grain and blood lipid changes in apparently healthy adults: A systematic review and meta-analysis of randomized controlled studies. American Journal of Clinical Nutrition, 102(3), 556–72. academic.oup.com/ajcn/article-abstract/102/3/556/4564317
108Seal, C. J. and Brownlee, I. A. (2015). Whole-grain foods and chronic disease: Evidence from epidemiological and intervention studies. Proceedings of the Nutrition Society, 74(3), 313–19. www.cambridge.org/core/journals/proceedings-of-the-nutrition-society/article/wholegrain-foods-and-chronic-disease-evidence-from-epidemiological-and-intervention-studies/0F3E606C81771E34E11E74FF8122E56B
109What is a Whole Grain? Oldways Whole Grains Council.wholegrainscouncil.org/what-whole-grain
1010Gupta, R. K., Gangoliya, S. S. and Singh, N. K. (2015). Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. Journal of Food Science and Technology, 52(2), 676–84. link.springer.com/article/10.1007/s13197-013-0978-y
1011Othman, R. A., Moghadasian, M. H. and Jones, P. J. (2011). Cholesterol-lowering effects of oat β-glucan. Nutrition Reviews, 69(6), 299–309. academic.oup.com/nutritionreviews/article-abstract/69/6/299/1815168
1012Greger, M. and Stone, G. (2015). How Not To Die : Discover the foods scientifically proven to prevent and reverse disease. Flatiron Books, New York. www.panmacmillan.com.au/9781509852505
1013Pes, G. M., Tolu, F., Dore, M. P., Sechi, G. P., Errigo, A., Canelada, A. and Poulain, M. (2015). Male longevity in Sardinia: A review of historical sources supporting a causal link with dietary factors. European Journal of Clinical Nutrition, 69(4), 411–18. www.nature.com/articles/ejcn2014230
1014World Health Organization. (2003). Diet, nutrition, and the prevention of chronic diseases: Report of a joint WHO/FAO Expert Consultation. World Health Organization, Geneva. apps.who.int/iris/bitstream/handle/10665/42665/WHO_TRS_916.pdf
1015Australian Government National Health and Medical Research Council and New Zealand Ministry of Health. (2014). Macronutrient Balance. Nutrient Reference Values for Australia and New Zealand.www.nrv.gov.au/chronic-disease/macronutrient-balance
1016Rizzo, N. S., Jaceldo-Siegl, K., Sabate, J. and Fraser, G. E. (2013). Nutrient profiles of vegetarian and nonvegetarian dietary patterns. Journal of the Academy of Nutrition and Dietetics, 113(12), 1610–19. www.sciencedirect.com/science/article/pii/S2212267213011131
1017Orlich, M. J. et al. (2013). Vegetarian dietary patterns and mortality in Adventist Health Study 2. JAMA Internal Medicine, 173(13), 1230–8. jamanetwork.com/journals/jamainternalmedicine/article-abstract/1710093
1018Briggs, M. A., Petersen, K. S. and Kris-Etherton, P. M. (2017). Saturated fatty acids and cardiovascular disease: Replacements for saturated fat to reduce cardiovascular risk. Healthcare, 5(2), 29. www.mdpi.com/2227-9032/5/2/29
1019Imamura, F., Micha, R., Wu, J. H., de Oliveira Otto, M. C., Otite, F. O., Abioye, A. I. and Mozaffarian, D. (2016). Effects of saturated fat, polyunsaturated fat, monounsaturated fat, and carbohydrate on glucose-insulin homeostasis: A systematic review and meta-analysis of randomised controlled feeding trials. PLOS Medicine, 13(7), e1002087. journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1002087
1020Liu, A. G., Ford, N. A., Hu, F. B., Zelman, K. M., Mozaffarian, D. and Kris-Etherton, P. M. (2017). A healthy approach to dietary fats: Understanding the science and taking action to reduce consumer confusion. Nutrition Journal, 16(1), 53. link.springer.com/article/10.1186/s12937-017-0271-4
1021Lichtenstein, A. H. and Van Horn, L. (1998). Very low fat diets. Circulation, 98(9), 935–9. www.ahajournals.org/doi/abs/10.1161/01.cir.98.9.935
1022Kris-Etherton, P. M., Petersen, K. and Van Horn, L. (2018). Convincing evidence supports reducing saturated fat to decrease cardiovascular disease risk. BMJ Nutrition, Prevention & Health, 1(1), bmjnph-2018-000009. nutrition.bmj.com/content/early/2018/11/15/bmjnph-2018-000009
1023Health Canada. (2018). Canada’s Dietary Guidelines: For health professionals and policy makers. Government of Canada, Ottawa. food-guide.canada.ca/sites/default/files/artifact-pdf/CDG-EN-2018.pdf
1024National Health and Medical Research Council. (2013). Australian Dietary Guidelines. National Health and Medical Research Council, Canberra. www.eatforhealth.gov.au/sites/default/files/content/n55_australian_dietary_guidelines.pdf
1025Zhao, M. et al. (2018). Substantial increase in compliance with saturated fatty acid intake recommendations after one year following the American Heart Association Diet. Nutrients, 10(10), 1486. www.mdpi.com/2072-6643/10/10/1486
1026American Heart Association. Saturated fat. American Heart Association.www.heart.org/en/healthy-living/healthy-eating/eat-smart/fats/saturated-fats
1027Theobroma oil. Science Direct.www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/theobroma-oil
1028Tokede, O. A., Gaziano, J. M. and Djousse, L. (2011). Effects of cocoa products/dark chocolate on serum lipids: A meta-analysis. European Journal of Clinical Nutrition, 65(8), 879–86. www.nature.com/articles/ejcn201164
1029Yasuda, A., Natsume, M., Sasaki, K., Baba, S., Nakamura, Y., Kanegae, M. and Nagaoka, S. (2008). Cacao procyanidins reduce plasma cholesterol and increase fecal steroid excretion in rats fed a high‐cholesterol diet. Biofactors, 33(3), 211–23. iubmb.onlinelibrary.wiley.com/doi/abs/10.1002/biof.5520330307
1030Freeman, A. M. et al. (2017). Trending cardiovascular nutrition controversies. Journal of the American College of Cardiology, 69(9), 1172–87. www.onlinejacc.org/content/69/9/1172
1031Neelakantan, N., Seah, J. Y. H. and van Dam, R. M. (2020). The effect of coconut oil consumption on cardiovascular risk factors: A systematic review and meta-analysis of clinical trials. Circulation, 141(10), 803–14. www.ahajournals.org/doi/abs/10.1161/CIRCULATIONAHA.119.043052
1032Latha, R. B. and Nasirullah, D. R. (2014). Physico-chemical changes in rice bran oil during heating at frying temperature. Journal of Food Science and Technology, 51(2), 335–40. link.springer.com/article/10.1007/s13197-011-0495-9
1033Jolfaie, N. R., Rouhani, M. H., Surkan, P. J., Siassi, F. and Azadbakht, L. (2016). Rice bran oil decreases total and LDL cholesterol in humans: A systematic review and meta-analysis of randomized controlled clinical trials. Hormone and Metabolic Research, 48(7), 417–26. www.thieme-connect.com/products/ejournals/abstract/10.1055/s-0042-105748
1034Azizian, H. and Kramer, J. K. (2005). A rapid method for the quantification of fatty acids in fats and oils with emphasis on trans fatty acids using Fourier transform near infrared spectroscopy (FT‐NIR). Lipids, 40(8), 855–67. aocs.onlinelibrary.wiley.com/doi/abs/10.1007/s11745-005-1448-3
1035Bhardwaj, S., Passi, S. J., Misra, A., Pant, K. K., Anwar, K., Pandey, R. M. and Kardam, V. (2016). Effect of heating/reheating of fats/oils, as used by Asian Indians, on trans fatty acid formation. Food Chemistry, 212, 663–70. www.sciencedirect.com/science/article/pii/S0308814616309141
1036Mossoba, M. M., Azizian, H., Tyburczy, C., Kramer, J. K., Delmonte, P., Kia, A. R. F. and Rader, J. I. (2013). Rapid FT-NIR analysis of edible oils for total SFA, MUFA, PUFA, and trans FA with comparison to GC. Journal of the American Oil Chemists’ Society, 90(6), 757–70. link.springer.com/content/pdf/10.1007/s11746-013-2234-z.pdf
1037Engel, S. and Tholstrup, T. (2015). Butter increased total and LDL cholesterol compared with olive oil but resulted in higher HDL cholesterol compared with a habitual diet. American Journal of Clinical Nutrition, 102(2), 309–15. academic.oup.com/ajcn/article-abstract/102/2/309/4564657
1038Sun, Y., Neelakantan, N., Wu, Y., Lote-Oke, R., Pan, A. and van Dam, R. M. (2015). Palm oil consumption increases LDL cholesterol compared with vegetable oils low in saturated fat in a meta-analysis of clinical trials. Journal of Nutrition, 145(7), 1549–58. academic.oup.com/jn/article-abstract/145/7/1549/4616780
1039Hu, F. B., Manson, J. E. and Willett, W. C. (2001). Types of dietary fat and risk of coronary heart disease: A critical review. Journal of the American College of Nutrition, 20(1), 5–19. www.tandfonline.com/doi/abs/10.1080/07315724.2001.10719008
1040Sacks, F. M. (2020). Coconut oil and heart health: Fact or fiction? Circulation, 141(10), 815–17. www.medscape.com/viewarticle/929357
1041Eyres, L., Eyres, M. F., Chisholm, A. and Brown, R. C. (2016). Coconut oil consumption and cardiovascular risk factors in humans. Nutrition Reviews, 74(4), 267–80. academic.oup.com/nutritionreviews/article-abstract/74/4/267/1807413
1042O’Keefe, S., Gaskins‐Wright, S., Wiley, V. and Chen, I.‐C. (1994). Levels of trans geometrical isomers of essential fatty acids in some unhydrogenated U.S. vegetable oils. Journal of Food Lipids, 1, 165–76. onlinelibrary.wiley.com/doi/abs/10.1111/j.1745-4522.1994.Tb00244.X
1043Government of Canada. (2019). Trans fatty acid claims. Government of Canada.www.inspection.gc.ca/food-label-requirements/labelling/industry/nutrient-content/specific-claim-requirements/eng/1389907770176/1389907817577?chap=6
1044Clemons, R. How bad are trans fats in food? Choice. 25 June 2019. www.choice.com.au/food-and-drink/nutrition/fats/articles/trans-fat
1045Remig, V., Franklin, B., Margolis, S., Kostas, G., Nece, T. and Street, J. C. (2010). Trans fats in America: A review of their use, consumption, health implications, and regulation. Journal of the American Dietetic Association, 110(4), 585–92. pubmed.ncbi.nlm.nih.gov/20338284
1046Kones, R., Howell, S. and Rumana, U. (2017). N-3 polyunsaturated fatty acids and cardiovascular disease: Principles, practices, pitfalls, and promises – A contemporary review. Medical Principles and Practice, 26(6), 497–508. www.karger.com/Article/Abstract/485837
1047Saleem, M. and Ahmad, N. (2018). Characterization of canola oil extracted by different methods using fluorescence spectroscopy. PLOS One, 13(12), e0208640. www.ncbi.nlm.nih.gov/pmc/articles/PMC6296546
1048Wroniak, M., Krygier, K. and Kaczmarczyk, M. (2008). Comparison of the quality of cold pressed and virgin rapeseed oils with industrially obtained oils. Polish Journal of Food and Nutrition Sciences, 58(1), 85–9. www.researchgate.net/profile/Malgorzata_Wroniak/publication/264402378_COMPARISON_OF_THE_QUALITY_OF_COLD_PRESSED_AND_VIRGIN_RAPESEED_OILS_WITH_INDUSTRIALLY_OBTAINED_OILS/links/53db8e5f0cf2a76fb667a46e.pdf
1049McDowell, D., Elliott, C. T. and Koidis, A. (2017). Characterization and comparison of UK, Irish, and French cold pressed rapeseed oils with refined rapeseed oils and extra virgin olive oils. European Journal of Lipid Science and Technology, 119(8), 1600327. onlinelibrary.wiley.com/doi/abs/10.1002/ejlt.201600327
1050American Heart Association. (2018). Dietary recommendations for healthy children. American Heart Association.www.heart.org/en/healthy-living/healthy-eating/eat-smart/nutrition-basics/dietary-recommendations-for-healthy-children
1051Burkitt, D. P. (1983). Don’t Forget Fibre in Your Diet: To help avoid many of our commonest diseases. 4th edition. Dunitz, London.
1052Trowell, H. (1972). Ischemic heart disease and dietary fiber. American Journal of Clinical Nutrition, 25(9), 926–32. academic.oup.com/ajcn/article-abstract/25/9/926/4819039
1053Fayet-Moore, F., Cassettari, T., Tuck, K., McConnell, A. and Petocz, P. (2018). Dietary fibre intake in Australia. Paper I: Associations with demographic, socio-economic, and anthropometric factors. Nutrients, 10(5), 599. www.mdpi.com/2072-6643/10/5/599
1054Quagliani, D. and Felt-Gunderson, P. (2017). Closing America’s fiber intake gap: Communication strategies from a food and fiber summit. American Journal of Lifestyle Medicine, 11(1), 80–5. journals.sagepub.com/doi/abs/10.1177/1559827615588079
1055DeVries, J. W. (2003). On defining dietary fibre. Proceedings of the Nutrition Society, 62(1), 37–43. www.cambridge.org/core/journals/proceedings-of-the-nutrition-society/article/on-defining-dietary-fibre/67177B38FC870323404F903950E23A1E
1056Australian Government National Health and Medical Research Council and New Zealand Ministry of Health. (2019). Dietary fibre. Nutrient Reference Values for Australia and New Zealand.www.nrv.gov.au/nutrients/dietary-fibre
1057Weickert, M. O. and Pfeiffer, A. F. (2018). Impact of dietary fiber consumption on insulin resistance and the prevention of type 2 diabetes. Journal of Nutrition, 148(1), 7–12. academic.oup.com/jn/article-abstract/148/1/7/4823705
1058Slavin, J. (2013). Fiber and prebiotics: Mechanisms and health benefits. Nutrients, 5(4), 1417–35. www.mdpi.com/2072-6643/5/4/1417
1059Nazzaro, F., Fratianni, F., De Feo, V., Battistelli, A., Da Cruz, A. G. and Coppola, R. (2020). Polyphenols, the new frontiers of prebiotics. Advances in Food and Nutrition Research, 94, 35–89. pubmed.ncbi.nlm.nih.gov/32892838
1060Żółkiewicz, J., Marzec, A., Ruszczyński, M. and Feleszko, W. (2020). Postbiotics – A step beyond pre- and probiotics. Nutrients, 12(8), 2189. www.ncbi.nlm.nih.gov/pmc/articles/PMC7468815
1061Valdes, A. M., Walter, J., Segal, E. and Spector, T. D. (2018). Role of the gut microbiota in nutrition and health. BMJ, 361, k2179. www.bmj.com/content/361/bmj.k2179
1062Singh, R. K. et al. (2017). Influence of diet on the gut microbiome and implications for human health. Journal of Translational Medicine, 15(1), 73. link.springer.com/article/10.1186/s12967-017-1175-y
1063Australian Government National Health and Medical Research Council and New Zealand Ministry of Health. (2017). Summary: Recommendations to reduce chronic disease risk. Nutrient Reference Values for Australia and New Zealand.www.nrv.gov.au/chronic-disease/summary
1064O’Keefe, S. J. (2019). The association between dietary fibre deficiency and high-income lifestyle-associated diseases: Burkitt’s hypothesis revisited. The Lancet Gastroenterology & Hepatology, 4(12), 984–96. www.sciencedirect.com/science/article/pii/S2468125319302572
1065Gardner, C. D., Hartle, J. C., Garrett, R. D., Offringa, L. C. and Wasserman, A. S. (2019). Maximizing the intersection of human health and the health of the environment with regard to the amount and type of protein produced and consumed in the United States. Nutrition Reviews, 77(4), 197–215. www.ncbi.nlm.nih.gov/pmc/articles/PMC6394758
1066Mariotti, F. and Gardner, C. D. (2019). Dietary protein and amino acids in vegetarian diets: A review. Nutrients, 11(11), 2661. www.mdpi.com/2072-6643/11/11/2661
1067Marsh, K. A., Munn, E. A. and Baines, S. K. (2013). Protein and vegetarian diets. Medical Journal of Australia, 199(4 Suppl), S7–10. faunalytics.org/wp-content/uploads/2015/05/Citation2049.pdf
1068McDougall, J. (2002). Plant foods have a complete amino acid composition. Circulation, 105(25), e197. www.medicosadventistas.org/wp-content/uploads/2018/09/Plant-Foods-Have-a-Complete-Amino-Acid-Composition.pdf
1069Craddock, J. C., Genoni, A., Strutt, E. F. and Goldman, D. M. (2021). Limitations with the Digestible Indispensable Amino Acid Score (DIAAS) with special attention to plant-based diets: A review. Current Nutrition Reports, 1–6. link.springer.com/article/10.1007/s13668-020-00348-8
1070Tomé, D. (2013). Digestibility issues of vegetable versus animal proteins: Protein and amino acid requirements – Functional aspects. Food and Nutrition Bulletin, 34(2), 272–4. journals.sagepub.com/doi/pdf/10.1177/156482651303400225
1071Australian Government National Health and Medical Research Council and New Zealand Ministry of Health. (2014). Protein. Nutrient Reference Values for Australia and New Zealand.www.nrv.gov.au/nutrients/protein
1072Melina, V., Craig, W. and Levin, S. (2016). Position of the Academy of Nutrition and Dietetics: Vegetarian diets. Journal of the Academy of Nutrition and Dietetics, 116(12), 1970–80. jandonline.org/article/S2212-2672(16)31192-3
1073Schüpbach, R., Wegmüller, R., Berguerand, C., Bui, M. and Herter-Aeberli, I. (2017). Micronutrient status and intake in omnivores, vegetarians and vegans in Switzerland. European Journal of Nutrition, 56(1), 283–93. link.springer.com/content/pdf/10.1007/s00394-015-1079-7.pdf
1074Davey, G. K., Spencer, E. A., Appleby, P. N., Allen, N. E., Knox, K. H. and Key, T. J. (2003). EPIC–Oxford: Lifestyle characteristics and nutrient intakes in a cohort of 33 883 meat-eaters and 31 546 non meat-eaters in the UK. Public Health Nutrition, 6(3), 259–68. www.ncbi.nlm.nih.gov/pubmed/12740075
1075Phillips, S. M., Moore, D. R. and Tang, J. E. (2007). A critical examination of dietary protein requirements, benefits, and excesses in athletes. International Journal of Sport Nutrition and Exercise Metabolism, 17(s1), S58–76. journals.humankinetics.com/view/journals/ijsnem/17/s1/article-pS58.xml
1076Thomas, D. T., Erdman, K. A. and Burke, L. M. (2016). Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and athletic performance. Journal of the Academy of Nutrition and Dietetics, 116(3), 501–28. www.sciencedirect.com/science/article/pii/S221226721501802X
1077Morton, R. W. et al. (2018). A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. British Journal of Sports Medicine, 52(6), 376–84. bjsm.bmj.com/content/52/6/376
1078Kato, H., Suzuki, K., Bannai, M. and Moore, D. R. (2016). Protein requirements are elevated in endurance athletes after exercise as determined by the indicator amino acid oxidation method. PLOS One, 11(6), e0157406. journals.plos.org/plosone/article?id=10.1371/journal.pone.0157406
1079Jäger, R. et al. (2017). International Society of Sports Nutrition position stand: Protein and exercise. Journal of the International Society of Sports Nutrition, 14(1), 1–25. jissn.biomedcentral.com/articles/10.1186/s12970-017-0177-8
1080Devries, M. C. et al. (2018). Changes in kidney function do not differ between healthy adults consuming higher- compared with lower- or normal-protein diets: A systematic review and meta-analysis. Journal of Nutrition, 148(11), 1760–75. academic.oup.com/jn/article-abstract/148/11/1760/5153345
1081Ko, G. J., Obi, Y., Tortoricci, A. R. and Kalantar-Zadeh, K. (2017). Dietary protein intake and chronic kidney disease. Current Opinion in Clinical Nutrition and Metabolic Care, 20(1), 77. www.ncbi.nlm.nih.gov/pmc/articles/pmc5962279
1082Applegate, C. C., Rowles, J. L., Ranard, K. M., Jeon, S. and Erdman, J. W. (2018). Soy consumption and the risk of prostate cancer: An updated systematic review and meta-analysis. Nutrients, 10(1), 40. www.mdpi.com/2072-6643/10/1/40
1083Messina, M. (2016). Impact of soy foods on the development of breast cancer and the prognosis of breast cancer patients. Complementary Medicine Research, 23(2), 75–80. www.karger.com/Article/Abstract/444735
1084Trock, B. J., Hilakivi-Clarke, L. and Clarke, R. (2006). Meta-analysis of soy intake and breast cancer risk. Journal of the National Cancer Institute, 98(7), 459–71. academic.oup.com/jnci/article-abstract/98/7/459/2522023
1085Okekunle, A. P., Gao, J., Wu, X., Feng, R. and Sun, C. (2020). Higher dietary soy intake appears inversely related to breast cancer risk independent of estrogen receptor breast cancer phenotypes. Heliyon, 6(7), e04228. www.sciencedirect.com/science/article/pii/S2405844020310720
1086Li, N. et al. (2020). Soy and isoflavone consumption and multiple health outcomes: Umbrella review of systematic reviews and meta‐analyses of observational studies and randomized trials in humans. Molecular Nutrition & Food Research, 64(4), 1900751. onlinelibrary.wiley.com/doi/abs/10.1002/mnfr.201900751
1087Simon, S. Soy and cancer risk: Our expert’s advice. American Cancer Society. 29 April 2019. www.cancer.org/latest-news/soy-and-cancer-risk-our-experts-advice.html
1088Messina, M. (2016). Soy and health update: Evaluation of the clinical and epidemiologic literature. Nutrients, 8(12), 754. www.ncbi.nlm.nih.gov/pmc/articles/PMC5188409
1089Martinez, J. and Lewi, J. (2008). An unusual case of gynecomastia associated with soy product consumption. Endocrine Practice, 14(4), 415–18. journals.aace.com/doi/abs/10.4158/EP.14.4.415
1090Reed, K. E., Camargo, J., Hamilton-Reeves, J., Kurzer, M. and Messina, M. (2020). Neither soy nor isoflavone intake affects male reproductive hormones: An expanded and updated meta-analysis of clinical studies. Reproductive Toxicology, 100, 60–7. Advance online publication. pubmed.ncbi.nlm.nih.gov/33383165
1091Messina, M. and Redmond, G. (2006). Effects of soy protein and soybean isoflavones on thyroid function in healthy adults and hypothyroid patients: A review of the relevant literature. Thyroid, 16(3), 249–58. pubmed.ncbi.nlm.nih.gov/16571087
1092Chandra, A. K., Mukhopadhyay, S., Lahari, D. and Tripathy, S. (2004). Goitrogenic content of Indian cyanogenic plant foods & their in vitro anti-thyroidal activity. Indian Journal of Medical Research, 119(5), 180–5. pubmed.ncbi.nlm.nih.gov/15218979
1093Sosvorová, L., Mikšátková, P., Bičíková, M., Kaňová, N. and Lapčík, O. (2012). The presence of monoiodinated derivates of daidzein and genistein in human urine and its effect on thyroid gland function. Food and Chemical Toxicology, 50(8), 2774–9. pubmed.ncbi.nlm.nih.gov/22659465
1094Kamle, M., Kumar, P., Patra, J. K. and Bajpai, V. K. (2017). Current perspectives on genetically modified crops and detection methods. 3 Biotech, 7(3), 219. link.springer.com/article/10.1007/s13205-017-0809-3
1095Flachowsky, G., Schafft, H. and Meyer, U. (2012). Animal feeding studies for nutritional and safety assessments of feeds from genetically modified plants: A review. Journal für Verbraucherschutz und Lebensmittelsicherheit, 7(3), 179–94. link.springer.com/article/10.1007/s00003-012-0777-9
1096Bøhn, T., Cuhra, M., Traavik, T., Sanden, M., Fagan, J. and Primicerio, R. (2014). Compositional differences in soybeans on the market: Glyphosate accumulates in Roundup Ready GM soybeans. Food Chemistry, 153, 207–15. pubmed.ncbi.nlm.nih.gov/24491722
1097Poore, J. and Nemecek, T. (2018). Reducing food’s environmental impacts through producers and consumers. Science, 360(6392), 987–92. science.sciencemag.org/content/360/6392/987
1098Cancer Council Australia National Cancer Control Policy. (2013). Position statement – Soy, phyto-oestrogens and cancer prevention. Cancer Council Australia. wiki.cancer.org.au/policy/Position_statement_-_Soy,_phyto-oestrogens_and_cancer_prevention
1099Iebba, V. et al. (2016). Eubiosis and dysbiosis: The two sides of the microbiota. New Microbiologica, 39(1), 1–12. core.ac.uk/download/pdf/54532058.pdf
10100De Filippo, C. et al. (2010). Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proceedings of the National Academy of Sciences, 107(33), 14691–6. www.pnas.org/content/107/33/14691
10101David, L. A. et al. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505(7484), 559–63. www.nature.com/articles/nature12820
10102Wang, S., Li, C., Copeland, L., Niu, Q. and Wang, S. (2015). Starch retrogradation: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 14(5), 568–85. onlinelibrary.wiley.com/doi/abs/10.1111/1541-4337.12143
10103Sonia, S., Witjaksono, F. and Ridwan, R. (2015). Effect of cooling of cooked white rice on resistant starch content and glycemic response. Asia Pacific Journal of Clinical Nutrition, 24(4), 620. apjcn.nhri.org.tw/server/APJCN/24/4/620.pdf
10104Muir, J. G. and O’Dea, K. (1992). Measurement of resistant starch: Factors affecting the amount of starch escaping digestion in vitro. American Journal of Clinical Nutrition, 56(1), 123–7. academic.oup.com/ajcn/article-abstract/56/1/123/4715601
10105McDonald, D. et al. (2018). American Gut: An open platform for citizen science microbiome research. mSystems, 3(3), e00031–18. msystems.asm.org/content/3/3/e00031-18
10106World Health Organization. Antibiotic resistance. WHO Newsroom. 31 July 2020.www.who.int/news-room/fact-sheets/detail/antibiotic-resistance
10107Thompson, H. J. et al. (2006). Dietary botanical diversity affects the reduction of oxidative biomarkers in women due to high vegetable and fruit intake. Journal of Nutrition, 136(8), 2207–12. academic.oup.com/jn/article-abstract/136/8/2207/4664809
10108Yoshimoto, S. et al. (2013). Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature, 499(7456), 97–101. www.nature.com/articles/nature12347
10109Nguyen, T. T., Ung, T. T., Kim, N. H. and Do Jung, Y. (2018). Role of bile acids in colon carcinogenesis. World Journal of Clinical Cases, 6(13), 577. www.ncbi.nlm.nih.gov/pmc/articles/PMC6232560/
10110Winham, D. M. and Hutchins, A. M. (2011). Perceptions of flatulence from bean consumption among adults in 3 feeding studies. Nutrition Journal, 10(1), 128. link.springer.com/article/10.1186/1475-2891-10-128
10111Wu, K. L. et al. (2008). Effects of ginger on gastric emptying and motility in healthy humans. European Journal of Gastroenterology & Hepatology, 20(5), 436–40. journals.lww.com/eurojgh/Abstract/2008/05000/Effects_of_ginger_on_gastric_emptying_and_motility.11.aspx
10112Boskabady, M. H., Alitaneh, S. and Alavinezhad, A. (2014). Carum copticum L.: A herbal medicine with various pharmacological effects. BioMed Research International, 2014, 569087. www.hindawi.com/journals/bmri/2014/569087
10113Agah, S., Taleb, A. M., Moeini, R., Gorji, N. and Nikbakht, H. (2013). Cumin extract for symptom control in patients with irritable bowel syndrome: A case series. Middle East Journal of Digestive Diseases, 5(4), 217. www.ncbi.nlm.nih.gov/pmc/articles/pmc3990147
10114Hatcher, H., Planalp, R., Cho, J., Torti, F. M. and Torti, S. V. (2008). Curcumin: From ancient medicine to current clinical trials. Cellular and Molecular Life Sciences, 65(11), 1631–52. www.ncbi.nlm.nih.gov/pmc/articles/PMC4686230
10115Srinivasan, K. (2007). Black pepper and its pungent principle-piperine: A review of diverse physiological effects. Critical Reviews in Food Science and Nutrition, 47(8), 735–48. www.tandfonline.com/doi/abs/10.1080/10408390601062054
10116Anti, M. et al. (1998). Water supplementation enhances the effect of high-fiber diet on stool frequency and laxative consumption in adult patients with functional constipation. Hepato-gastroenterology, 45(21), 727–32. pubmed.ncbi.nlm.nih.gov/9684123
10117Nour-Eldein, H., Salama, H. M., Abdulmajeed, A. A. and Heissam, K. S. (2014). The effect of lifestyle modification on severity of constipation and quality of life of elders in nursing homes at Ismailia city, Egypt. Journal of Family & Community Medicine, 21(2), 100–6.www.ncbi.nlm.nih.gov/pmc/articles/PMC4073557
10118Basnayake, C. (2018). Treatment of irritable bowel syndrome. Australian Prescriber, 41(5), 145. www.ncbi.nlm.nih.gov/pmc/articles/PMC6202292
10119Zhang, Q. E., Wang, F., Qin, G., Zheng, W., Ng, C. H., Ungvari, G. S., Yuan, Z., Mei, S., Wang, G. and Xiang, Y. T. (2018). Depressive symptoms in patients with irritable bowel syndrome: A meta-analysis of comparative studies. International Journal of Biological Sciences, 14(11), 1504–12. www.ncbi.nlm.nih.gov/pmc/articles/PMC6158731
10120Catassi, G., Lionetti, E., Gatti, S. and Catassi, C. (2017). The low FODMAP diet: Many question marks for a catchy acronym. Nutrients, 9(3), 292. www.ncbi.nlm.nih.gov/pmc/articles/PMC5372955
10121Hill, P., Muir, J. G. and Gibson, P. R. (2017). Controversies and recent developments of the low-FODMAP diet. Gastroenterology & Hepatology, 13(1), 36–45. www.ncbi.nlm.nih.gov/pmc/articles/PMC5390324
10122De Filippis, F. et al. (2016). High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut, 65(11), 1812–21. gut.bmj.com/content/65/11/1812
10123Chambers, E. S., Preston, T., Frost, G. and Morrison, D. J. (2018). Role of gut microbiota-generated short-chain fatty acids in metabolic and cardiovascular health. Current Nutrition Reports, 7(4), 198–206. link.springer.com/article/10.1007/s13668-018-0248-8
10124Rubio-Tapia, A., Hill, I. D., Kelly, C. P., Calderwood, A. H. and Murray, J. A. (2013). merican College of Gastroenterology clinical guideline: Diagnosis and management of celiac disease. American Journal of Gastroenterology, 108(5), 656. pubmed.ncbi.nlm.nih.gov/23609613
10125Niland, B. and Cash, B. D. (2018). Health benefits and adverse effects of a gluten-free diet in non–celiac disease patients. Gastroenterology & Hepatology, 14(2), 82. www.ncbi.nlm.nih.gov/pmc/articles/PMC5866307
10126Green, P. H. and Cellier, C. (2007). Celiac Disease. New England Journal of Medicine, 357(17), 1731–43. www.nejm.org/doi/full/10.1056/nejmra071600
10127Lionetti, E., Pulvirenti, A., Vallorani, M., Catassi, G., Verma, A. K., Gatti, S. and Catassi, C. (2017). Re-challenge studies in non-celiac gluten sensitivity: A systematic review and meta-analysis. Frontiers in Physiology, 8, 621. www.frontiersin.org/articles/10.3389/fphys.2017.00621
10128Barbaro, M. R., Cremon, C., Stanghellini, V. and Barbara, G. (2018). Recent advances in understanding non-celiac gluten sensitivity. F1000Research, 7. www.ncbi.nlm.nih.gov/pmc/articles/pmc6182669
10129Biesiekierski, J. R., Peters, S. L., Newnham, E. D., Rosella, O., Muir, J. G. and Gibson, P. R. (2013). No effects of gluten in patients with self-reported non-celiac gluten sensitivity after dietary reduction of fermentable, poorly absorbed, short-chain carbohydrates. Gastroenterology, 145(2), 320–8. www.sciencedirect.com/science/article/pii/S0016508513007026
10130Skodje, G. I. et al. (2018). Fructan, rather than gluten, induces symptoms in patients with self-reported non-celiac gluten sensitivity. Gastroenterology, 154(3), 529–39. www.sciencedirect.com/science/article/pii/S0016508517363023
10131Bulsiewicz, W. (2020). Fiber Fueled: The plant-based gut health program for losing weight, restoring your health, and optimizing your microbiome. Avery, an imprint of Penguin Random House, New York. www.penguin.com.au/books/fiber-fueled-9780593084564
10132Lebwohl, B. and Willett, W. C. (2017). Long term gluten consumption in adults without celiac disease and risk of coronary heart disease: Prospective cohort study. BMJ, 357, j1892. www.bmj.com/content/357/bmj.j1892
10133Hu, Y. et al. (2020). Intake of whole grain foods and risk of type 2 diabetes: Results from three prospective cohort studies. BMJ, 370, m2206. www.bmj.com/content/370/bmj.m2206
10134Aune, D., Norat, T., Romundstad, P. and Vatten, L. J. (2013). Whole grain and refined grain consumption and the risk of type 2 diabetes: A systematic review and dose-response meta-analysis of cohort studies. European Journal of Epidemiology, 28(11), 845–58. link.springer.com/content/pdf/10.1007/s10654-013-9852-5.pdf
10135Zong, G. et al. (2018). Gluten intake and risk of type 2 diabetes in three large prospective cohort studies of US men and women. Diabetologia, 61(10), 2164–73. link.springer.com/article/10.1007/s00125-018-4697-9
10136Noah, N. D., Bender, A. E., Reaidi, G. B. and Gilbert, R. J. (1980). Food poisoning from raw red kidney beans. BMJ, 281(6234), 236–7. www.ncbi.nlm.nih.gov/pmc/articles/PMC171367066
10137Bender, A. E. and Reaidi, G. B. (1982). Toxicity of kidney beans (Phaseolus vulgaris) with particular reference to lectins. Journal of Plant Foods, 4(1), 15–22. www.tandfonline.com/doi/abs/10.1080/0142968X.1982.11904243
10138Mazalovska, M. and Kouokam, J. C. (2020). Plant-derived lectins as potential cancer therapeutics and diagnostic tools. BioMed Research International, 2020, 1631394. www.hindawi.com/journals/bmri/2020/1631394
10139Miller, V. et al. (2017). Fruit, vegetable, and legume intake, and cardiovascular disease and deaths in 18 countries (PURE): A prospective cohort study. The Lancet, 390(10107), 2037–49. www.sciencedirect.com/science/article/pii/S0140673617322535
10140Li, H., Li, J., Shen, Y., Wang, J. and Zhou, D. (2017). Legume consumption and all-cause and cardiovascular disease mortality. BioMed Research International, 2017, 8450618. www.hindawi.com/journals/bmri/2017/8450618
10141Darmadi-Blackberry, I., Wahlqvist, M. L., Kouris-Blazos, A., Steen, B., Lukito, W., Horie, Y. and Horie, K. (2004). Legumes: The most important dietary predictor of survival in older people of different ethnicities. Asia Pacific Journal of Clinical Nutrition, 13(2), 217–20. citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.538.8279&rep=rep1&type=pdf
10142Hayat, I., Ahmad, A., Masud, T., Ahmed, A. and Bashir, S. (2014). Nutritional and health perspectives of beans (Phaseolus vulgaris L.): An overview. Critical Reviews in Food Science and Nutrition, 54(5), 580–92. www.tandfonline.com/doi/abs/10.1080/10408398.2011.596639
10143Cooper, J. S., Phuyal, P. and Shah, N. (2020). Oxygen Toxicity. (Updated 19 November 2020). In StatPearls [Internet]. StatPearls Publishing, Treasure Island. www.ncbi.nlm.nih.gov/books/NBK430743
10144Whelan, K. (2011). Probiotics and prebiotics in the management of irritable bowel syndrome: A review of recent clinical trials and systematic reviews. Current Opinion in Clinical Nutrition and Metabolic Care, 14(6), 581–7. pubmed.ncbi.nlm.nih.gov/21892075
10145Su, G. L., Ko, C. W., Bercik, P., Falck-Ytter, Y., Sultan, S., Weizman, A. V. and Morgan, R. L. (2020). AGA clinical practice guidelines on the role of probiotics in the management of gastrointestinal disorders. Gastroenterology, 159(2), 697–705. www.gastrojournal.org/article/S0016-5085%2820%2934729-6
10146Franzosa, E. A., Huang, K., Meadow, J. F., Gevers, D., Lemon, K. P., Bohannan, B. J. and Huttenhower, C. (2015). Identifying personal microbiomes using metagenomic codes. Proceedings of the National Academy of Sciences, 112(22), E2930–8. www.pnas.org/content/112/22/E2930
10147Zawistowska-Rojek, A. and Tyski, S. (2018). Are probiotic really safe for humans? Polish Journal of Microbiology, 67(3), 251. www.ncbi.nlm.nih.gov/pmc/articles/pmc7256845
10148Hempel, S. et al. (2012). Probiotics for the prevention and treatment of antibiotic-associated diarrhea: A systematic review and meta-analysis. JAMA, 307(18), 1959–69. pubmed.ncbi.nlm.nih.gov/22570464
10149Sleator, R. D. (2015). Designer probiotics: Development and applications in gastrointestinal health. World Journal of Gastrointestinal Pathophysiology, 6(3), 73. www.ncbi.nlm.nih.gov/pmc/articles/PMC4540709
10150Dale, H. F., Rasmussen, S. H., Asiller, Ö. Ö. and Lied, G. A. (2019). Probiotics in irritable bowel syndrome: An up-to-date systematic review. Nutrients, 11(9), 2048. www.mdpi.com/2072-6643/11/9/2048
10151Suez, J. et al. (2018). Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell, 174(6), 1406–23. www.sciencedirect.com/science/article/pii/S0092867418311085
10152Derrien, M. and van Hylckama Vlieg, J. E. (2015). Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends in Microbiology, 23(6), 354–66. www.sciencedirect.com/science/article/pii/S0966842X15000566
10153Dimidi, E., Cox, S. R., Rossi, M. and Whelan, K. (2019). Fermented foods: Definitions and characteristics, impact on the gut microbiota and effects on gastrointestinal health and disease. Nutrients, 11(8), 1806. www.mdpi.com/2072-6643/11/8/1806
10154Lu, Z., Breidt, F., Plengvidhya, V. and Fleming, H. P. (2003). Bacteriophage ecology in commercial sauerkraut fermentations. Applied and Environmental Microbiology, 69(6), 3192–202. aem.asm.org/content/69/6/3192
10155Şanlier, N., Gökcen, B. B. and Sezgin, A. C. (2019). Health benefits of fermented foods. Critical Reviews in Food Science and Nutrition, 59(3), 506–27. www.tandfonline.com/doi/abs/10.1080/10408398.2017.1383355
10156Melini, F., Melini, V., Luziatelli, F., Ficca, A. G. and Ruzzi, M. (2019). Health-promoting components in fermented foods: An up-to-date systematic review. Nutrients, 11(5), 1189. www.mdpi.com/2072-6643/11/5/1189
10157Abu-Salem, F. M., Mohamed, R. K., Gibriel, A. Y. and Rasmy, N. M. (2014). Levels of some antinutritional factors in tempeh produced from some legumes and jojobas seeds. International Journal of Biological, Agricultural, Biosystems, Life Science and Engineering, 8(3), 296–301. www.researchgate.net/profile/Rasha_Mohamed41/publication/330873382_Levels_of_Some_Antinutritional_Factors_in_Tempeh_Produced_From_Some_Legumes_and_Jojobas_Seeds/links/5c59458d92851c22a3aa78b8/Levels-of-Some-Antinutritional-Factors-in-Tempeh-Produced-From-Some-Legumes-and-Jojobas-Seeds.pdf
10158Lopez, H. W., Krespine, V., Guy, C., Messager, A., Demigne, C. and Remesy, C. (2001). Prolonged fermentation of whole wheat sourdough reduces phytate level and increases soluble magnesium. Journal of Agricultural and Food Chemistry, 49(5), 2657–62. pubs.acs.org/doi/abs/10.1021/jf001255z
10159Reddy, N. R. and Pierson, M. D. (1994). Reduction in antinutritional and toxic components in plant foods by fermentation. Food Research International, 27(3), 281–90. www.sciencedirect.com/science/article/pii/0963996994900965
10160Filannino, P., Bai, Y., Di Cagno, R., Gobbetti, M. and Gänzle, M. G. (2015). Metabolism of phenolic compounds by Lactobacillus spp. during fermentation of cherry juice and broccoli puree. Food Microbiology, 46, 272–9. www.sciencedirect.com/science/article/pii/S0740002014002172
10161Saa, D. T., Di Silvestro, R., Dinelli, G. and Gianotti, A. (2017). Effect of sourdough fermentation and baking process severity on dietary fibre and phenolic compounds of immature wheat flour bread. LWT – Food Science and Technology, 83, 26–32. www.sciencedirect.com/science/article/pii/S0023643817302980
10162Laatikainen, R., Koskenpato, J., Hongisto, S. M., Loponen, J., Poussa, T., Hillilä, M. and Korpela, R. (2016). Randomised clinical trial: Low‐FODMAP rye bread vs. regular rye bread to relieve the symptoms of irritable bowel syndrome. Alimentary Pharmacology and Therapeutics, 44(5), 460–70. onlinelibrary.wiley.com/doi/abs/10.1111/apt.13726
10163Webber, S. Fermented foods and FODMAPs. FODMAP Blog. Monash University. 25 January 2017. www.monashfodmap.com/blog/fermented-foods-and-fodmaps
10164Allès, B., Baudry, J., Méjean, C., Touvier, M., Péneau, S., Hercberg, S. and Kesse-Guyot, E. (2017). Comparison of sociodemographic and nutritional characteristics between self-reported vegetarians, vegans, and meat-eaters from the NutriNet-Santé study. Nutrients, 9(9), 1023. www.mdpi.com/224318
10165Sobiecki, J. G., Appleby, P. N., Bradbury, K. E. and Key, T. J. (2016). High compliance with dietary recommendations in a cohort of meat eaters, fish eaters, vegetarians, and vegans: Results from the European Prospective Investigation into Cancer and Nutrition–Oxford study. Nutrition Research, 36(5), 464–77. www.sciencedirect.com/science/article/pii/S0271531716000026
10166Haider, L. M., Schwingshackl, L., Hoffmann, G. and Ekmekcioglu, C. (2018). The effect of vegetarian diets on iron status in adults: A systematic review and meta-analysis. Critical Reviews in Food Science and Nutrition, 58(8), 1359–74. www.tandfonline.com/doi/abs/10.1080/10408398.2016.1259210
10167Foster, M., Chu, A., Petocz, P. and Samman, S. (2013). Effect of vegetarian diets on zinc status: A systematic review and meta‐analysis of studies in humans. Journal of the Science of Food and Agriculture, 93(10), 2362–71. onlinelibrary.wiley.com/doi/abs/10.1002/jsfa.6179
10168Leung, A. M., LaMar, A., He, X., Braverman, L. E. and Pearce, E. N. (2011). Iodine status and thyroid function of Boston-area vegetarians and vegans. Journal of Clinical Endocrinology & Metabolism, 96(8), E1303–7. academic.oup.com/jcem/article-abstract/96/8/E1303/2833831
10169Henjum, S. et al. (2018). Suboptimal iodine status and low iodine knowledge in young Norwegian women. Nutrients, 10(7), 941. www.mdpi.com/2072-6643/10/7/941
10170Brantsæter, A. L. et al. (2018). Inadequate iodine intake in population groups defined by age, life stage and vegetarian dietary practice in a Norwegian convenience sample. Nutrients, 10(2), 230.www.mdpi.com/2072-6643/10/2/230
10171Larsson, C. L. and Johansson, G. K. (2002). Dietary intake and nutritional status of young vegans and omnivores in Sweden. American Journal of Clinical Nutrition, 76(1), 100–6. academic.oup.com/ajcn/article-abstract/76/1/100/4689466
10172Judd, P. A., Long, A., Butcher, M., Caygill, C. P. and Diplock, A. T. (1997). Vegetarians and vegans may be most at risk from low selenium intakes. BMJ, 314(7097), 1834. www.ncbi.nlm.nih.gov/pmc/articles/pmc2126932/
10173Saunders, A. V., Davis, B. C. and Garg, M. L. (2013). Omega‐3 polyunsaturated fatty acids and vegetarian diets. Medical Journal of Australia, 199, S22–6. onlinelibrary.wiley.com/doi/abs/10.5694/mja11.11507
10174Harris, W. S. et al. (2009). Omega-6 fatty acids and risk for cardiovascular disease: A science advisory from the American Heart Association Nutrition Subcommittee of the Council on Nutrition, Physical Activity, and Metabolism; Council on Cardiovascular Nursing; and Council on Epidemiology and Prevention. Circulation, 119(6), 902–7. www.ahajournals.org/doi/abs/10.1161/circulationaha.108.191627
10175Marklund, M. et al. (2019). Biomarkers of dietary omega-6 fatty acids and incident cardiovascular disease and mortality: An individual-level pooled analysis of 30 cohort studies. Circulation, 139(21), 2422–36. www.ahajournals.org/doi/abs/10.1161/CIRCULATIONAHA.118.038908
10176Li, J., Guasch-Ferré, M., Li, Y. and Hu, F. B. (2020). Dietary intake and biomarkers of linoleic acid and mortality: Systematic review and meta-analysis of prospective cohort studies. American Journal of Clinical Nutrition, 112(1), 150–67. academic.oup.com/ajcn/article-abstract/doi/10.1093/ajcn/nqz349/5727348
10177Calder, P. C. (2012). Mechanisms of action of (n-3) fatty acids. Journal of Nutrition, 142(3), 592S–9S. academic.oup.com/jn/article-abstract/142/3/592S/4630968
10178Simopoulos, A. P. (2001). Evolutionary aspects of diet, essential fatty acids and cardiovascular disease. European Heart Journal Supplements, 3(suppl_D), D8–21. academic.oup.com/eurheartjsupp/article-abstract/3/suppl_D/D8/369525
10179Davis, B. C. and Kris-Etherton, P. M. (2003). Achieving optimal essential fatty acid status in vegetarians: Current knowledge and practical implications. American Journal of Cinical Nutrition, 78(3), 640S–6S. academic.oup.com/ajcn/article-abstract/78/3/640S/4690006
10180Gibson, R. A., Muhlhausler, B. and Makrides, M. (2011). Conversion of linoleic acid and alpha‐linolenic acid to long‐chain polyunsaturated fatty acids (LCPUFAs), with a focus on pregnancy, lactation and the first 2 years of life. Maternal & Child Nutrition, 7, 17–26. onlinelibrary.wiley.com/doi/abs/10.1111/j.1740-8709.2011.00299.x
10181Gerster, H. (1998). Can adults adequately convert a-linolenic acid (18: 3n-3) to eicosapentaenoic acid (20: 5n-3) and docosahexaenoic acid (22: 6n-3)? International Journal for Vitamin and Nutrition Research, 68(3), 159–73. www.ncbi.nlm.nih.gov/pubmed/9637947
10182Brossard, N., Croset, M., Pachiaudi, C., Riou, J. P., Tayot, J. L. and Lagarde, M. (1996). Retroconversion and metabolism of [13C]22:6n-3 in humans and rats after intake of a single dose of [13C]22:6n-3-triacylglycerols. American Journal of Clinical Nutrition, 64(4), 577–86. pubmed.ncbi.nlm.nih.gov/8839503
10183Hu, Y., Hu, F. B. and Manson, J. E. (2019). Marine omega‐3 supplementation and cardiovascular disease: An updated meta‐analysis of 13 randomized controlled trials involving 127,477 participants. Journal of the American Heart Association, 8(19), e013543. www.ahajournals.org/doi/abs/10.1161/JAHA.119.013543
10184Kris-Etherton, P. M. et al. (2019). Recent clinical trials shed new light on the cardiovascular benefits of omega-3 fatty acids. Methodist Debakey Cardiovascular Journal, 15(3), 171–8. www.ncbi.nlm.nih.gov/pmc/articles/pmc6822654
10185Li, Z. H. et al. (2020). Associations of habitual fish oil supplementation with cardiovascular outcomes and all cause mortality: Evidence from a large population based cohort study. BMJ (Clinical Research Ed.), 368, m456. www.bmj.com/content/368/bmj.m456
10186Manson, J. E. et al. (2019). Marine n-3 fatty acids and prevention of cardiovascular disease and cancer. New England Journal of Medicine, 380(1), 23–32. www.nejm.org/doi/full/10.1056/NEJMoa1811403
10187ASCEND Study Collaborative Group, Bowman, L. et al. (2018). Effects of n-3 fatty acid supplements in diabetes mellitus. New England Journal of Medicine, 379(16), 1540–50. pubmed.ncbi.nlm.nih.gov/30146932
10188Huang, T., Yang, B., Zheng, J., Li, G., Wahlqvist, M. L. and Li, D. (2012). Cardiovascular disease mortality and cancer incidence in vegetarians: A meta-analysis and systematic review. Annals of Nutrition and Metabolism, 60(4), 233–40. www.karger.com/Article/FullText/337301
10189Key, T. J. et al. (1999). Mortality in vegetarians and nonvegetarians: Detailed findings from a collaborative analysis of 5 prospective studies. American Journal of Clinical Nutrition, 70(3), 516s–24s. academic.oup.com/ajcn/article-abstract/70/3/516s/4714974
10190Bhatt, D. L. et al. (2019). Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. New England Journal of Medicine, 380(1), 11–22. www.nejm.org/doi/full/10.1056/nejmoa1812792
10191Middleton, P., Gomersall, J. C., Gould, J. F., Shepherd, E., Olsen, S. F. and Makrides, M. (2018). Omega‐3 fatty acid addition during pregnancy. Cochrane Database of Systematic Reviews, (11), CD003402. www.ncbi.nlm.nih.gov/pmc/articles/pmc6516961
10192Arterburn, L. M., Oken, H. A., Bailey Hall, E., Hamersley, J., Kuratko, C. N. and Hoffman, J. P. (2008). Algal-oil capsules and cooked salmon: Nutritionally equivalent sources of docosahexaenoic acid. Journal of the American Dietetic Association, 108(7), 1204–9. www.sciencedirect.com/science/article/pii/S0002822308005129
10193Kagan, M. L., West, A. L., Zante, C. and Calder, P. C. (2013). Acute appearance of fatty acids in human plasma: A comparative study between polar-lipid rich oil from the microalgae Nannochloropsis oculata and krill oil in healthy young males. Lipids in Health and Disease, 12(102).link.springer.com/article/10.1186/1476-511X-12-102
10194Ryan, L. and Symington, A. M. (2015). Algal-oil supplements are a viable alternative to fish-oil supplements in terms of docosahexaenoic acid (22: 6n-3; DHA). Journal of Functional Foods, 19, 852–8. www.sciencedirect.com/science/article/pii/S1756464614002229
10195O’Leary, F. and Samman, S. (2010). Vitamin B12 in health and disease. Nutrients, 2(3), 299–316. www.mdpi.com/2072-6643/2/3/299
10196Zeuschner, C. L., Hokin, B. D., Marsh, K. A., Saunders, A. V., Reid, M. A. and Ramsay, M. R. (2013). Vitamin B12 and vegetarian diets. Medical Journal of Australia, 199, S27–32. onlinelibrary.wiley.com/doi/abs/10.5694/mja11.11509
10197Tucker, K. L., Rich, S., Rosenberg, I., Jacques, P., Dallal, G., Wilson, P. W. and Selhub, J. (2000). Plasma vitamin B-12 concentrations relate to intake source in the Framingham Offspring study. American Journal of Clinical Nutrition, 71(2), 514–22. www.ncbi.nlm.nih.gov/pubmed/10648266
10198Briani, C., Dalla Torre, C., Citton, V., Manara, R., Pompanin, S., Binotto, G. and Adami, F. (2013). Cobalamin deficiency: Clinical picture and radiological findings. Nutrients, 5(11), 4521–39. www.mdpi.com/2072-6643/5/11/4521
10199Hariz, A. and Bhattacharya, P. T. (2020). Megaloblastic Anemia. In StatPearls [Internet]. StatPearls Publishing, Treasure Island. www.ncbi.nlm.nih.gov/books/NBK537254
10200Molloy, A. M. et al. (2009). Maternal vitamin B12 status and risk of neural tube defects in a population with high neural tube defect prevalence and no folic acid fortification. Pediatrics, 123(3), 917–23. pediatrics.aappublications.org/content/123/3/917
10201Zhang, T., Xin, R., Gu, X., Wang, F., Pei, L., Lin, L., Chen, G., Wu, J. and Zheng, X. (2009). Maternal serum vitamin B12, folate and homocysteine and the risk of neural tube defects in the offspring in a high-risk area of China. Public Health Nutrition, 12(5), 680–6. pubmed.ncbi.nlm.nih.gov/18547453
10202Ratan, S. K. et al. (2008). Evaluation of the levels of folate, vitamin B12, homocysteine and fluoride in the parents and the affected neonates with neural tube defect and their matched controls. Pediatric Surgery International, 24(7), 803. link.springer.com/content/pdf/10.1007/s00383-008-2167-z.pdf
10203Australian Government National Health and Medical Research Council and New Zealand Ministry of Health. (2018). Vitamin B12. Nutrient Reference Values for Australia and New Zealand.www.nrv.gov.au/nutrients/vitamin-b12
10204Obeid, R., Heil, S. G., Verhoeven, M., Van Den Heuvel, E. G., De Groot, L. C. P. G. M., and Eussen, S. J. (2019). Vitamin B12 intake from animal foods, biomarkers and health aspects. Frontiers in Nutrition, 6, 93. www.frontiersin.org/articles/10.3389/fnut.2019.00093/abstract
10205Pitkin, R. M., Allen, L. H., Bailey, L. B. and Bernfield, M. (2000). Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin and choline. National Academies Press, Washington, D.C. www.ncbi.nlm.nih.gov/books/NBK114310
10206DSM in Animal Nutrition & Health. Vitamin B12. DSM.www.dsm.com/markets/anh/en_US/Compendium/ruminants/vitamin_B12.html
10207Rooke, J. Do carnivores need Vitamin B12 supplements? Baltimore Post-Examiner. 30 October 2013. baltimorepostexaminer.com/carnivores-need-vitamin-b12-supplements/2013/10/30
10208Carmel, R. (2008). How I treat cobalamin (vitamin B12) deficiency. Blood, 112(6), 2214–21. www.ncbi.nlm.nih.gov/pmc/articles/PMC2532799
10209Spence, J. D. (2020). The need for clinical judgement in the application of evidence-based medicine. BMJ Evidence-Based Medicine, 25(5), 172–7. ebm.bmj.com/content/25/5/172.abstract
10210Linnell, J. C., Smith, A. D., Smith, C. L., Wilson, J. and Matthews, D. M. (1968). Effects of smoking on metabolism and excretion of vitamin B12. BMJ, 2(5599), 215. www.ncbi.nlm.nih.gov/pmc/articles/PMC1985886
10211Van Leeuwen, J. P. T. M., Van Driel, M., Van Den Bemd, G. J. C. M. and Pols, H. A. P. (2001). Vitamin D control of osteoblast function and bone extracellular matrix mineralization. Critical Reviews in Eukaryotic Gene Expression, 11(1–3). www.ncbi.nlm.nih.gov/pubmed/11693961
10212Nair, R. and Maseeh, A. (2012). Vitamin D: The ‘sunshine’ vitamin. Journal of Pharmacology & Pharmacotherapeutics, 3(2), 118–26. www.ncbi.nlm.nih.gov/pmc/articles/PMC3356951
10213Maurya, V. K. and Aggarwal, M. (2017). Factors influencing the absorption of vitamin D in GIT: An overview. Journal of Food Science and Technology, 54(12), 3753–65. link.springer.com/article/10.1007/s13197-017-2840-0
10214Nowson, C. A. and Margerison, C. (2002). Vitamin D intake and vitamin D status of Australians. Medical Journal of Australia, 177(3), 149–52. onlinelibrary.wiley.com/doi/abs/10.5694/j.1326-5377.2002.tb04702.x
10215Ko, J. A., Lee, B. H., Lee, J. S. and Park, H. J. (2008). Effect of UV-B exposure on the concentration of vitamin D2 in sliced shiitake mushroom (Lentinus edodes) and white button mushroom (Agaricus bisporus). Journal of Agricultural and Food Chemistry, 56(10), 3671–4. pubs.acs.org/doi/abs/10.1021/jf073398s
10216Al-Daghri, N. M., Al-Attas, O., Yakout, S., Aljohani, N., Al-Fawaz, H. and Alokail, M. S. (2015). Dietary products consumption in relation to serum 25-hydroxyvitamin D and selenium level in Saudi children and adults. International Journal of Clinical and Experimental Medicine, 8(1), 1305. www.ncbi.nlm.nih.gov/pmc/articles/PMC4358586
10217Daly, R. M. et al. (2012). Prevalence of vitamin D deficiency and its determinants in Australian adults aged 25 years and older: A national, population-based study. Clinical Endocrinology, 77(1), 26–35. onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2265.2011.04320.x
10218Tavakoli, F., Namakin, K. and Zardast, M. (2016). Vitamin D supplementation and high-density lipoprotein cholesterol: A study in healthy school children. Iranian Journal of Pediatrics, 26(4). www.ncbi.nlm.nih.gov/pmc/articles/PMC5045666
10219Holick, M. F. (2004). Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. American Journal of Clinical Nutrition, 80(6), 1678S–88S. academic.oup.com/ajcn/article/80/6/1678S/4690512
10220Zhang, R. and Naughton, D. P. (2010). Vitamin D in health and disease: Current perspectives. Nutrition Journal, 9(1), 65. nutritionj.biomedcentral.com/articles/10.1186/1475-2891-9-65
10221Spedding, S. (2014). Vitamin D and depression: A systematic review and meta-analysis comparing studies with and without biological flaws. Nutrients, 6(4), 1501–18. www.mdpi.com/2072-6643/6/4/1501
10222Crowe, F. L., Steur, M., Allen, N. E., Appleby, P. N., Travis, R. C. and Key, T. J. (2011). Plasma concentrations of 25-hydroxyvitamin D in meat eaters, fish eaters, vegetarians and vegans: Results from the EPIC-Oxford study. Public Health Nutrition, 14(2), 340–6. www.ncbi.nlm.nih.gov/pubmed/20854716
10223Chan, J., Jaceldo-Siegl, K. and Fraser, G. E. (2009). Serum 25-hydroxyvitamin D status of vegetarians, partial vegetarians, and nonvegetarians: The Adventist Health Study-2. American Journal of Clinical Nutrition, 89(5), 1686S–92S. academic.oup.com/ajcn/article-abstract/89/5/1686S/4596962
10224Hansen, T. H. et al. (2018). Bone turnover, calcium homeostasis, and vitamin D status in Danish vegans. European Journal of Clinical Nutrition, 72(7), 1046–54. www.nature.com/articles/s41430-017-0081-y
10225Huotari, A. and Herzig, K. H. (2008). Vitamin D and living in northern latitudes: An endemic risk area for vitamin D deficiency. International Journal of Circumpolar Health, 67(2–3), 164–78. www.tandfonline.com/doi/abs/10.3402/ijch.v67i2-3.18258
10226Australian Government National Health and Medical Research Council and New Zealand Ministry of Health. (2014). Vitamin D. Nutrient Reference Values for Australia and New Zealand.www.nrv.gov.au/nutrients/vitamin-d
10227Osteoporosis Australia Medical & Scientific Advisory Committee. (2017). Vitamin D. Osteoporosis Australia.www.osteoporosis.org.au/vitamin-d
10228Osteoporosis Australia. (2012). Vitamin D: Consumer guide. Osteoporosis Australia.www.osteoporosis.org.au/sites/default/files/files/vitdconsumerguide.pdf
10229Cancer Council Australia. Vitamin D. Cancer Council.www.cancer.org.au/cancer-information/causes-and-prevention/sun-safety/vitamin-d
10230Tripkovic, L. et al. (2012). Comparison of vitamin D2 and vitamin D3 supplementation in raising serum 25-hydroxyvitamin D status: a systematic review and meta-analysis. American Journal of Clinical Nutrition, 95(6), 1357–64. academic.oup.com/ajcn/article-abstract/95/6/1357/4568382
10231Lehmann, U., Hirche, F., Stangl, G. I., Hinz, K., Westphal, S. and Dierkes, J. (2013). Bioavailability of vitamin D2 and D3 in healthy volunteers, a randomized placebo-controlled trial. Journal of Clinical Endocrinology & Metabolism, 98(11), 4339–45. academic.oup.com/jcem/article-abstract/98/11/4339/2834818
10232Bischoff-Ferrari, H. A. (2008). Optimal serum 25-hydroxyvitamin D levels for multiple health outcomes. Advances in Experimental Medicine and Biology, 624, 55. www.ncbi.nlm.nih.gov/pubmed/18348447
10233Heaney, R. P. (2005). The vitamin D requirement in health and disease. Journal of Steroid Biochemistry and Molecular Biology, 97(1–2), 13–19. www.sciencedirect.com/science/article/pii/S0960076005002396
10234Bischoff-Ferrari, H. A., Shao, A., Dawson-Hughes, B., Hathcock, J., Giovannucci, E. and Willett, W. C. (2010). Benefit–risk assessment of vitamin D supplementation. Osteoporosis International, 21(7), 1121–32. link.springer.com/article/10.1007%252Fs00198-009-1119-3
10235Norris, J. and Messina, V. (2020). Vegan for Life: Everything you need to know to be healthy on a plant-based diet. Hachette Books, London. www.hachette.com.au/jack-norris-virginia-messina/vegan-for-life-everything-you-need-to-know-to-be-healthy-on-a-plant-based-diet
10236Ekwaru, J. P., Zwicker, J. D., Holick, M. F., Giovannucci, E. and Veugelers, P. J. (2014). The importance of body weight for the dose-response relationship of oral vitamin D supplementation and serum 25-hydroxyvitamin D in healthy volunteers. PLOS One, 9(11), e111265. journals.plos.org/plosone/article?id=10.1371/journal.pone.0111265
10237American Geriatrics Society Workgroup on Vitamin D Supplementation for Older Adults. (2014). Recommendations abstracted from the American Geriatrics Society Consensus Statement on vitamin D for Prevention of Falls and Their Consequences. Journal of the American Geriatrics Society, 62(1), 147–52. pubmed.ncbi.nlm.nih.gov/24350602
10238Barbro, N., Brittmarie, S. and Cederblad, Å. K. E. (1985). Reduction of the phytate content of bran by leavening in bread and its effect on zinc absorption in man. British Journal of Nutrition, 53(1), 47–53. www.ncbi.nlm.nih.gov/pubmed/2998440%20
10239Gibson, R. S., Perlas, L. and Hotz, C. (2006). Improving the bioavailability of nutrients in plant foods at the household level. Proceedings of the Nutrition Society, 65(2), 160–8. www.ncbi.nlm.nih.gov/pubmed/16672077
10240Benincasa, P., Falcinelli, B., Lutts, S., Stagnari, F. and Galieni, A. (2019). Sprouted grains: A comprehensive review. Nutrients, 11(2), 421. www.mdpi.com/2072-6643/11/2/421
10241Luo, Y. and Xie, W. (2014). Effect of soaking and sprouting on iron and zinc availability in green and white faba bean (Vicia faba L.). Journal of Food Science and Technology, 51(12), 3970–6. link.springer.com/article/10.1007/s13197-012-0921-7
10242Schlemmer, U., Frølich, W., Prieto, R. M. and Grases, F. (2009). Phytate in foods and significance for humans: Food sources, intake, processing, bioavailability, protective role and analysis. Molecular Nutrition & Food Research, 53(S2), S330–75. onlinelibrary.wiley.com/doi/abs/10.1002/mnfr.200900099
10243Chai, W. and Liebman, M. (2005). Effect of different cooking methods on vegetable oxalate content. Journal of Agricultural and Food Chemistry, 53(8), 3027–30. pubs.acs.org/doi/abs/10.1021/jf048128d
10244Australian Institute of Health and Welfare. (2020). Osteoporosis. AIHW, Australian Government, Canberra. www.aihw.gov.au/reports/chronic-musculoskeletal-conditions/osteoporosis
10245Sözen, T., Özışık, L. and Başaran, N. Ç. (2017). An overview and management of osteoporosis. European Journal of Rheumatology, 4(1), 46. www.ncbi.nlm.nih.gov/pmc/articles/pmc5335887
10246Osteoporosis Australia Medical & Scientific Advisory Committee. (2017). Risk factors. Osteoporosis Australia.www.osteoporosis.org.au/risk-factors
10247Rosen, C. J. (2020). The epidemiology and pathogenesis of osteoporosis. In Endotext [Internet]. MDText.com, South Dartmouth. www.ncbi.nlm.nih.gov/books/NBK279134
10248Mangels, A. R. (2014). Bone nutrients for vegetarians. American Journal of Clinical Nutrition, 100(suppl_1), 469S–75S. academic.oup.com/ajcn/article-abstract/100/suppl_1/469S/4576666
10249Akbari, S. and Rasouli-Ghahroudi, A. A. (2018). Vitamin K and bone metabolism: A review of the latest evidence in preclinical studies. BioMed Research International, 2018, 4629383. www.hindawi.com/journals/bmri/2018/4629383
10250Roman-Garcia, P. et al. (2014). Vitamin B 12–dependent taurine synthesis regulates growth and bone mass. Journal of Clinical Investigation, 124(7), 2988–3002. www.jci.org/articles/view/72606
10251Australian Government National Health and Medical Research Council and New Zealand Ministry of Health. (2014). Vitamin K. Nutrient Reference Values for Australia and New Zealand.www.nrv.gov.au/nutrients/vitamin-k
10252Conly, J. and Stein, K. (1994). Reduction of vitamin K2 concentrations in human liver associated with the use of broad spectrum antimicrobials. Clinical and Investigative Medicine, 17(6), 531. www.ncbi.nlm.nih.gov/pubmed/7895417
10253Knapen, M. H., Drummen, N. E., Smit, E., Vermeer, C. and Theuwissen, E. (2013). Three-year low-dose menaquinone-7 supplementation helps decrease bone loss in healthy postmenopausal women. Osteoporosis International, 24(9), 2499–507. link.springer.com/article/10.1007/s00198-013-2325-6
10254Kaneki, M. et al. (2001). Japanese fermented soybean food as the major determinant of the large geographic difference in circulating levels of vitamin K2: Possible implications for hip-fracture risk. Nutrition, 17(4), 315–21. www.sciencedirect.com/science/article/pii/S0899900700005542
10255NHS. (2020). Calcium. NHS.www.nhs.uk/conditions/vitamins-and-minerals/calcium/
10256Institute of Medicine (US) Committee to Review Dietary Reference Intakes for Vitamin D and Calcium; Ross, A. C., Taylor, C. L., Yaktine, A.L. et al. (eds). (2011). 5 dietary reference intakes for adequacy: calcium and vitamin D. In Dietary Reference Intakes for Calcium and Vitamin D. National Academies Press, Washington, D.C. www.ncbi.nlm.nih.gov/books/NBK56056
10257Australian Government National Health and Medical Research Council and New Zealand Ministry of Health. (2014). Calcium. Nutrient Reference Values for Australia and New Zealand.www.nrv.gov.au/nutrients/calcium
10258Chapter 11. Calcium. Food and Agriculture Organization of the United Nations.www.fao.org/3/y2809e/y2809e0h.htm
10259Willett, W. C. and Ludwig, D. S. (2020). Milk and health. New England Journal of Medicine, 382(7), 644–54. www.nejm.org/doi/full/10.1056/NEJMra1903547
10260Bolland, M. J., Leung, W., Tai, V., Bastin, S., Gamble, G. D., Grey, A. and Reid, I. R. (2015). Calcium intake and risk of fracture: Systematic review. BMJ, 351, h4580. www.bmj.com/content/351/bmj.h4580
10261De Laet, C. et al. (2005). Body mass index as a predictor of fracture risk: A meta-analysis. Osteoporosis International, 16(11), 1330–8. link.springer.com/article/10.1007/s00198-005-1863-y
10262Warensjö, E., Byberg, L., Melhus, H., Gedeborg, R., Mallmin, H., Wolk, A. and Michaëlsson, K. (2011). Dietary calcium intake and risk of fracture and osteoporosis: Prospective longitudinal cohort study. BMJ, 342, d1473. www.bmj.com/content/342/bmj.d1473
10263Beck, B. R., Daly, R. M., Singh, M. A. and Taaffe, D. R. (2017). Exercise and Sports Science Australia (ESSA) position statement on exercise prescription for the prevention and management of osteoporosis. Journal of Science and Medicine in Sport, 20(5), 438–45.pubmed.ncbi.nlm.nih.gov/27840033
102645.7 Recommendations for preventing osteoporosis. World Health Organization.www.who.int/dietphysicalactivity/publications/trs916/en/gsfao_osteo.pdf
10265Appleby, P., Roddam, A., Allen, N. and Key, T. (2007). Comparative fracture risk in vegetarians and nonvegetarians in EPIC-Oxford. European Journal of Clinical Nutrition, 61(12), 1400–6. www.nature.com/articles/1602659
10266Tong, T. Y. et al. (2020). Vegetarian and vegan diets and risks of total and site-specific fractures: Results from the prospective EPIC-Oxford study. BMC Medicine, 18(1), 1–15. www.ncbi.nlm.nih.gov/pmc/articles/PMC7682057
10267Hill, S. and Nagra, M. (2021). Are vegans at greater risk of fracture? Plant Proof. plantproof.com/are-vegans-at-greater-risk-of-fracture
10268Ho-Pham, L. T., Vu, B. Q., Lai, T. Q., Nguyen, N. D. and Nguyen, T. V. (2012). Vegetarianism, bone loss, fracture and vitamin D: A longitudinal study in Asian vegans and non-vegans. European Journal of Clinical Nutrition, 66(1), 75–82. www.nature.com/articles/ejcn2011131
10269Menal Puey, S., Marques-Lopes, I. and Morán del Ruste, M. (2018). Food and nutrient intake in Spanish vegetarians and vegans. Progress in Nutrition, 20(2), 189–96. www.researchgate.net/publication/327022559_Food_and_nutrient_intake_in_Spanish_vegetarians_and_vegans
10270Weaver, C. M., Heaney, R. P., Connor, L., Martin, B. R., Smith, D. L. and Nielsen, S. (2002). Bioavailability of calcium from tofu as compared with milk in premenopausal women. Journal of Food Science, 67(8), 3144–7. onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2621.2002.tb08873.x
10271Weaver, C. M., Proulx, W. R. and Heaney, R. (1999). Choices for achieving adequate dietary calcium with a vegetarian diet. American Journal of Clinical Nutrition, 70(3 Suppl), 543S–8S. academic.oup.com/ajcn/article-abstract/70/3/543s/4714998
10272Cheung, A. T. F., Wilcox, G., Strauss, B., Walker, K. Z., Ashton, J. F. and Stojanovska, L. (2008). Calcium absorption in Australian osteopenic post menopausal women: Comparative study of fortified soymilk to fermented fortified soymilk. Asia Pacific Journal of Clinical Nutrition, 17, S44. search.proquest.com/openview/db3b7a0c2b14fb1bb19cdba4b6959c76/1
10273Zhao, Y., Martin, B. R. and Weaver, C. M. (2005). Calcium bioavailability of calcium carbonate fortified soymilk is equivalent to cow’s milk in young women. Journal of Nutrition, 135(10), 2379–82. academic.oup.com/jn/article-abstract/135/10/2379/4669853
10274Tobacman, J. K. (2001). Review of harmful gastrointestinal effects of carrageenan in animal experiments. Environmental Health Perspectives, 109(10), 983–94. ehp.niehs.nih.gov/doi/abs/10.1289/ehp.01109983
10275Borthakur, A., Bhattacharyya, S., Dudeja, P. K. and Tobacman, J. K. (2007). Carrageenan induces interleukin-8 production through distinct Bcl10 pathway in normal human colonic epithelial cells. American Journal of Physiology: Gastrointestinal and Liver Physiology, 292(3), G829–38. journals.physiology.org/doi/abs/10.1152/ajpgi.00380.2006
10276Borthakur, A., Bhattacharyya, S., Anbazhagan, A. N., Kumar, A., Dudeja, P. K. and Tobacman, J. K. (2012). Prolongation of carrageenan-induced inflammation in human colonic epithelial cells by activation of an NFκB‐BCL10 loop. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease, 1822(8), 1300–7. www.sciencedirect.com/science/article/pii/S0925443912001032
10277Niaz, K., Zaplatic, E. and Spoor, J. (2018). Extensive use of monosodium glutamate: A threat to public health? EXCLI journal, 17, 273. www.ncbi.nlm.nih.gov/pmc/articles/pmc5938543
10278Martino, J. V., Van Limbergen, J. and Cahill, L. E. (2017). The role of carrageenan and carboxymethylcellulose in the development of intestinal inflammation. Frontiers in Pediatrics, 5, 96. www.frontiersin.org/articles/10.3389/fped.2017.00096
10279Bae, Y. J. et al. (2011). Magnesium supplementation through seaweed calcium extract rather than synthetic magnesium oxide improves femur bone mineral density and strength in ovariectomized rats. Biological Trace Element Research, 144(1–3), 992–1002. link.springer.com/article/10.1007/s12011-011-9073-2
10280Zenk, J. L., Frestedt, J. L. and Kuskowski, M. A. (2018). Effect of calcium derived from Lithothamnion sp. on markers of calcium metabolism in premenopausal women. Journal of Medicinal Food, 21(2), 154–8. www.liebertpub.com/doi/abs/10.1089/jmf.2017.0023
10281Adluri, R. S., Zhan, L., Bagchi, M., Maulik, N. and Maulik, G. (2010). Comparative effects of a novel plant-based calcium supplement with two common calcium salts on proliferation and mineralization in human osteoblast cells. Molecular and Cellular Biochemistry, 340(1–2), 73–80. link.springer.com/article/10.1007/s11010-010-0402-0
10282Sakhaee, K., Bhuket, T., Adams-Huet, B. and Rao, D. S. (1999). Meta-analysis of calcium bioavailability: A comparison of calcium citrate with calcium carbonate. American Journal of Therapeutics, 6(6), 313–21. europepmc.org/article/med/11329115
10283Harvard Women’s Health Watch. How much calcium do you really need? Harvard Health Publishing. 11 September 2019.www.health.harvard.edu/staying-healthy/how-much-calcium-do-you-really-need
10284www.health.harvard.edu/staying-healthy/how-much-calcium-do-you-really-needwww.bmj.com/content/bmj/341/bmj.c3691.full.pdf
10285Yang, C., Shi, X., Xia, H., Yang, X., Liu, H., Pan, D. and Sun, G. (2020). The evidence and controversy between dietary calcium intake and calcium supplementation and the risk of cardiovascular disease: A systematic review and meta-analysis of cohort studies and randomized controlled trials. Journal of the American College of Nutrition, 39(4), 352–70. www.tandfonline.com/doi/abs/10.1080/07315724.2019.1649219
10286Australian Institute of Health and Welfare. (2011). Mandatory folic acid and iodine fortification in Australia and New Zealand: Supplement to the baseline report for monitoring. Cat. no. PHE 153. AIHW, Australian Government, Canberra. www.aihw.gov.au/getmedia/5bd11641-6fb0-4fd3-a509-3b35fe3253b7/13526.pdf
10287Groufh-Jacobsen, S. et al. (2020). Vegans, vegetarians and pescatarians are at risk of iodine deficiency in Norway. Nutrients, 12(11), 3555. www.mdpi.com/2072-6643/12/11/3555
10288Fallon, N. and Dillon, S. A. (2020). Low intakes of iodine and selenium amongst vegan and vegetarian women highlight a potential nutritional vulnerability. Frontiers in Nutrition, 7, 72. www.ncbi.nlm.nih.gov/pmc/articles/PMC7251157
10289Krajcovicová-Kudlácková, M., Bucková, K., Klimes, I. and Seboková, E. (2003). Iodine deficiency in vegetarians and vegans. Annals of Nutrition and Metabolism, 47(5), 183–5. www.karger.com/Article/Abstract/70483
10290Australian Thyroid Foundation. Iodine Deficiency. Australian Thyroid Foundation.thyroidfoundation.org.au/Iodine-Deficiency
10291Zimmermann, M. B., Jooste, P. L. and Pandav, C. S. (2008). Iodine-deficiency disorders. The Lancet, 372(9645), 1251–62. pubmed.ncbi.nlm.nih.gov/18676011
10292Kapil, U. (2007). Health consequences of iodine deficiency. Sultan Qaboos University Medical Journal, 7(3), 267. www.ncbi.nlm.nih.gov/pmc/articles/PMC3074887
10293Niwattisaiwong, S., Burman, K. D. and Li-Ng, M. (2017). Iodine deficiency: Clinical implications. Cleveland Clinic Journal of Medicine, 84(3), 236–44. pubmed.ncbi.nlm.nih.gov/28322679/
10294Dillon, J. C. and Milliez, J. (2000). Reproductive failure in women living in iodine deficient areas of West Africa. BJOG: An International Journal of Obstetrics and Gynaecology, 107(5), 631–6. obgyn.onlinelibrary.wiley.com/doi/abs/10.1111/j.1471-0528.2000.tb13305.x
10295Australian Government National Health and Medical Research Council and New Zealand Ministry of Health. (2014). Iodine. Nutrient Reference Values for Australia and New Zealand.www.nrv.gov.au/nutrients/iodine
10296Ahad, F. and Ganie, S. A. (2010). Iodine, iodine metabolism and iodine deficiency disorders revisited. Indian Journal of Endocrinology and Metabolism, 14(1), 13. www.ncbi.nlm.nih.gov/pmc/articles/PMC3063534
10297Andersson, M., de Benoist, B. and Rogers, L. (2010). Epidemiology of iodine deficiency: Salt iodisation and iodine status. Best Practice & Research Clinical Endocrinology & Metabolism, 24(1), 1–11. pubmed.ncbi.nlm.nih.gov/20172466
10298Amster, E., Tiwary, A. and Schenker, M. B. (2007). Case report: Potential arsenic toxicosis secondary to herbal kelp supplement. Environmental Health Perspectives, 115(4), 606–8. ehp.niehs.nih.gov/doi/abs/10.1289/ehp.9495
10299Schenker, M., Amster, E. and Tiwary, A. (2007). Arsenic in herbal kelp supplements: Schenker et al. respond. Environmental Health Perspectives, 115(12), A576–7. ehp.niehs.nih.gov/doi/full/10.1289/ehp.10393R
10300Johnson-Wimbley, T. D. and Graham, D. Y. (2011). Diagnosis and management of iron deficiency anemia in the 21st century. Therapeutic Advances in Gastroenterology, 4(3), 177–84. journals.sagepub.com/doi/abs/10.1177/1756283X11398736
10301Camaschella, C. (2015). Iron-deficiency anemia. New England Journal of Medicine, 372(19), 1832–43. www.nejm.org/doi/full/10.1056/NEJMra1401038
10302Lopez, A., Cacoub, P., Macdougall, I. C. and Peyrin-Biroulet, L. (2016). Iron deficiency anaemia. The Lancet, 387(10021), 907–16. www.thelancet.com/pdfs/journals/lancet/PIIS0140-6736(15)60865-0.pdf
10303Jimenez, K., Kulnigg-Dabsch, S. and Gasche, C. (2015). Management of iron deficiency anemia. Gastroenterology & Hepatology, 11(4), 241. www.ncbi.nlm.nih.gov/pmc/articles/pmc4836595
10304Australian Government National Health and Medical Research Council and New Zealand Ministry of Health. (2014). Iron. Nutrient Reference Values for Australia and New Zealand.www.nrv.gov.au/nutrients/iron
10305Zhao, L., Zhang, X., Shen, Y., Fang, X., Wang, Y. and Wang, F. (2015). Obesity and iron deficiency: A quantitative meta-analysis. Obesity Reviews, 16(12), 1081–93. pubmed.ncbi.nlm.nih.gov/26395622
10306Alaunyte, I., Stojceska, V. and Plunkett, A. (2015). Iron and the female athlete: A review of dietary treatment methods for improving iron status and exercise performance. Journal of the International Society of Sports Nutrition, 12(1), 38. link.springer.com/article/10.1186/s12970-015-0099-2
10307Hunt, J. R. (2003). Bioavailability of iron, zinc, and other trace minerals from vegetarian diets. American Journal of Clinical Nutrition, 78(3), 633S–9S. academic.oup.com/ajcn/article-abstract/78/3/633S/4690005
10308Saunders, A. V., Craig, W. J., Baines, S. K. and Posen, J. S. (2013). Iron and vegetarian diets. Medical Journal of Australia, 199(4), S11–16. www.mja.com.au/journal/2013/199/4/iron-and-vegetarian-diets
10309Bao, W., Rong, Y., Rong, S. and Liu, L. (2012). Dietary iron intake, body iron stores, and the risk of type 2 diabetes: A systematic review and meta-analysis. BMC Medicine, 10(1), 119. link.springer.com/article/10.1186/1741-7015-10-119
10310Trumbo, P., Yates, A. A., Schlicker, S. and Poos, M. (2001). Dietary reference intakes: Vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Journal of the American Dietetic Association, 101(3), 294–301. pubmed.ncbi.nlm.nih.gov/11269606
10311Hurrell, R. and Egli, I. (2010). Iron bioavailability and dietary reference values. American Journal of Clinical Nutrition, 91(5), 1461S–7S. pubmed.ncbi.nlm.nih.gov/20200263
10312Better Health Channel. Nutrition – women’s extra needs. Department of Health & Human Services, State Government of Victoria. www.betterhealth.vic.gov.au:443/health/healthyliving/nutrition-womens-extra-needs
10313Pawlak, R., Berger, J. and Hines, I. (2018). Iron status of vegetarian adults: A review of literature. American Journal of Lifestyle Medicine, 12(6), 486–98. journals.sagepub.com/doi/abs/10.1177/1559827616682933
10314genannt Bonsmann, S. S., Walczyk, T., Renggli, S. and Hurrell, R. F. (2008). Oxalic acid does not influence nonhaem iron absorption in humans: A comparison of kale and spinach meals. European Journal of Clinical Nutrition, 62(3), 336–41. pubmed.ncbi.nlm.nih.gov/17440529
10315Fallah, A. A., Sarmast, E., Dehkordi, S. H., Engardeh, J., Mahmoodnia, L., Khaledifar, A. and Jafari, T. (2018). Effect of Chlorella supplementation on cardiovascular risk factors: A meta-analysis of randomized controlled trials. Clinical Nutrition, 37(6), 1892–901. www.sciencedirect.com/science/article/pii/S0261561417313511
10316Panahi, Y., Badeli, R., Karami, G. R., Badeli, Z. and Sahebkar, A. (2015). A randomized controlled trial of 6-week Chlorella vulgaris supplementation in patients with major depressive disorder. Complementary Therapies in Medicine, 23(4), 598–602. www.sciencedirect.com/science/article/pii/S0965229915001016
10317Rellán, S., Osswald, J., Saker, M., Gago-Martinez, A. and Vasconcelos, V. (2009). First detection of anatoxin-a in human and animal dietary supplements containing cyanobacteria. Food and Chemical Toxicology, 47(9), 2189–95. www.sciencedirect.com/science/article/pii/S0278691509002762
10318Roy-Lachapelle, A., Solliec, M., Bouchard, M. F. and Sauvé, S. (2017). Detection of cyanotoxins in algae dietary supplements. Toxins, 9(3), 76. www.mdpi.com/2072-6651/9/3/76
10319Zijp, I. M., Korver, O. and Tijburg, L. B. (2000). Effect of tea and other dietary factors on iron absorption. Critical Reviews in Food Science and Nutrition, 40(5), 371–98. pubmed.ncbi.nlm.nih.gov/11029010
10320Deckers, J. (2016). Might a vegan diet be healthy, or even healthier? In Animal (De)Liberation: Should the consumption of animal products be banned? Ubiquity Press, London. www.ubiquitypress.com/site/books/m/10.5334/bay/
10321Hurrell, R. F., Juillerat, M. A., Reddy, M. B., Lynch, S. R., Dassenko, S. A. and Cook, J. D. (1992). Soy protein, phytate, and iron absorption in humans. American Journal of Clinical Nutrition, 56(3), 573–8. academic.oup.com/ajcn/article-abstract/56/3/573/4715420
10322Cook, J. D., Morck, T. A. and Lynch, S. R. (1981). The inhibitory effect of soy products on nonheme iron absorption in man. American Journal of Clinical Nutrition, 34(12), 2622–9. pubmed.ncbi.nlm.nih.gov/7198374
10323Hurrell, R. F., Reddy, M. and Cook, J. D. (1999). Inhibition of non-haem iron absorption in man by polyphenolic-containing beverages. British Journal of Nutrition, 81(4), 289–95. pubmed.ncbi.nlm.nih.gov/10999016
10324Gautam, S., Platel, K. and Srinivasan, K. (2010). Higher bioaccessibility of iron and zinc from food grains in the presence of garlic and onion. Journal of Agricultural and Food Chemistry, 58(14), 8426–9. pubs.acs.org/doi/abs/10.1021/jf100716t
10325Garcı́a-Casal, M. N. et al. (1998). Vitamin A and β-carotene can improve nonheme iron absorption from rice, wheat and corn by humans. Journal of Nutrition, 128(3), 646–50. academic.oup.com/jn/article-abstract/128/3/646/4728862
10326Hallberg, L. (1981). Bioavailability of dietary iron in man. Annual Review of Nutrition, 1(1), 123–47. www.annualreviews.org/doi/pdf/10.1146/annurev.nu.01.070181.001011
10327Hallberg, L. and Hulthén, L. (2000). Prediction of dietary iron absorption: An algorithm for calculating absorption and bioavailability of dietary iron. American Journal of Clinical Nutrition, 71(5), 1147–60. pubmed.ncbi.nlm.nih.gov/10799377
10328Gianfredi, V., Nucci, D., Vannini, S., Villarini, M. and Moretti, M. (2017). In vitro biological effects of sulforaphane (SFN), epigallocatechin-3-gallate (EGCG), and curcumin on breast cancer cells: A systematic review of the literature. Nutrition and Cancer, 69(7), 969–78. pubmed.ncbi.nlm.nih.gov/28872903
10329Rose, P., Huang, Q., Ong, C. N. and Whiteman, M. (2005). Broccoli and watercress suppress matrix metalloproteinase-9 activity and invasiveness of human MDA-MB-231 breast cancer cells. Toxicology and Applied Pharmacology, 209(2), 105–13. pubmed.ncbi.nlm.nih.gov/15953625
10330Murillo, G. and Mehta, R. G. (2001). Cruciferous vegetables and cancer prevention. Nutrition and Cancer, 41(1–2), 17–28. pubmed.ncbi.nlm.nih.gov/15953625
10331Soundararajan, P. and Kim, J. S. (2018). Anti-carcinogenic glucosinolates in cruciferous vegetables and their antagonistic effects on prevention of cancers. Molecules, 23(11), 2983. www.mdpi.com/1420-3049/23/11/2983
10332Jeffery, E. H. and Keck, A. S. (2008). Translating knowledge generated by epidemiological and in vitro studies into dietary cancer prevention. Molecular Nutrition & Food Research, 52(S1), S7–17. onlinelibrary.wiley.com/doi/abs/10.1002/mnfr.200700226
10333Kim, J. K. and Park, S. U. (2016). Current potential health benefits of sulforaphane. EXCLI Journal, 15, 571–7. core.ac.uk/download/pdf/83041864.pdf
10334Fahey, J. W., Holtzclaw, W. D., Wehage, S. L., Wade, K. L., Stephenson, K. K. and Talalay, P. (2015). Sulforaphane bioavailability from glucoraphanin-rich broccoli: Control by active endogenous myrosinase. PLOS One, 10(11), e0140963. pubmed.ncbi.nlm.nih.gov/26524341
10335Okunade, O., Niranjan, K., Ghawi, S. K., Kuhnle, G. and Methven, L. (2018). Supplementation of the diet by exogenous myrosinase via mustard seeds to increase the bioavailability of sulforaphane in healthy human subjects after the consumption of cooked broccoli. Molecular Nutrition & Food Research, 62(18), 1700980. onlinelibrary.wiley.com/doi/abs/10.1002/mnfr.201700980
10336Ghawi, S. K., Methven, L. and Niranjan, K. (2013). The potential to intensify sulforaphane formation in cooked broccoli (Brassica oleracea var. italica) using mustard seeds (Sinapis alba). Food Chemistry, 138(2–3), 1734–41. www.sciencedirect.com/science/article/pii/S0308814612016937
10337Lynch, R. et al. (2017). Sulforaphane from broccoli reduces symptoms of autism: A follow-up case series from a randomized double-blind study. Global Advances in Health and Medicine, 6, 2164957X17735826. journals.sagepub.com/doi/abs/10.1177/2164957X17735826
10338Fahey, J. W., Zhang, Y. and Talalay, P. (1997). Broccoli sprouts: An exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proceedings of the National Academy of Sciences, 94(19), 10367–72. www.pnas.org/content/94/19/10367
10339Guo, L., Yang, R., Wang, Z. and Gu, Z. (2015). Effect of freezing methods on sulforaphane formation in broccoli sprouts. RSC Advances, 5(41), 32290–7. www.researchgate.net/publication/273957493_Effect_of_freezing_methods_on_sulforaphane_formation_in_broccoli_sprouts
10340Goddard, A. F., James, M. W., McIntyre, A. S. and Scott, B. B. (2011). Guidelines for the management of iron deficiency anaemia. Gut, 60(10), 1309–16. gut.bmj.com/content/60/10/1309
10341Hallberg, L., Brune, M. A. T. S. and Rossander-Hulthén, L. E. N. A. (1987). Is there a physiological role of vitamin C in iron absorption? Annals of the New York Academy of Sciences, 498, 324. www.ncbi.nlm.nih.gov/pubmed/3304065
10342Imam, M. U., Zhang, S., Ma, J., Wang, H. and Wang, F. (2017). Antioxidants mediate both iron homeostasis and oxidative stress. Nutrients, 9(7), 671. www.ncbi.nlm.nih.gov/pmc/articles/PMC5537786
10343Rayman, M. P. (2012). Selenium and human health. The Lancet, 379(9822), 1256–68. www.sciencedirect.com/science/article/pii/S0140673611614529
10344Shreenath, A. P. and Dooley, J. (2019). Selenium deficiency. In StatPearls [Internet]. StatPearls Publishing, Treasure Island. www.ncbi.nlm.nih.gov/books/NBK482260
10345Jones, G. D. et al. (2017). Selenium deficiency risk predicted to increase under future climate change. Proceedings of the National Academy of Sciences, 114(11), 2848–53. www.pnas.org/content/114/11/2848
10346Stoffaneller, R. and Morse, N. L. (2015). A review of dietary selenium intake and selenium status in Europe and the Middle East. Nutrients, 7(3), 1494–537. www.mdpi.com/2072-6643/7/3/1494
10347Alfthan, G. et al. (2015). Effects of nationwide addition of selenium to fertilizers on foods, and animal and human health in Finland: From deficiency to optimal selenium status of the population. Journal of Trace Elements in Medicine and Biology, 31, 142–7. www.sciencedirect.com/science/article/pii/S0946672X14000662
10348Ventura, M., Melo, M. and Carrilho, F. (2017). Selenium and thyroid disease: From pathophysiology to treatment. International Journal of Endocrinology, 2017. www.hindawi.com/journals/ije/2017/1297658
10349Kuria, A., Tian, H., Li, M., Wang, Y., Aaseth, J. O., Zang, J. and Cao, Y. (2020). Selenium status in the body and cardiovascular disease: A systematic review and meta-analysis. Critical Reviews in Food Science and Nutrition, 1–10. www.tandfonline.com/doi/full/10.1080/10408398.2020.1803200
10350Kamble, P. et al. (2009). Selenium intoxication with selenite broth resulting in acute renal failure and severe gastritis. Saudi Journal of Kidney Diseases and Transplantation, 20(1), 106–11. pubmed.ncbi.nlm.nih.gov/19112227
10351Thomson, C. D., Chisholm, A., McLachlan, S. K. and Campbell, J. M. (2008). Brazil nuts: An effective way to improve selenium status. American Journal of Clinical Nutrition, 87(2), 379–84. academic.oup.com/ajcn/article-abstract/87/2/379/4633360
10352Fairweather-Tait, S. J., Collings, R. and Hurst, R. (2010). Selenium bioavailability: Current knowledge and future research requirements. American Journal of Clinical Nutrition, 91(5), 1484S–91S. academic.oup.com/ajcn/article-abstract/91/5/1484S/4597437
10353Sandstead, H. H. (1994). Understanding zinc: Recent observations and interpretations. Journal of Laboratory and Clinical Medicine, 124(3), 322–7. europepmc.org/article/med/8083574
10354Fallah, A., Mohammad-Hasani, A. and Colagar, A. H. (2018). Zinc is an essential element for male fertility: A review of Zn roles in men’s health, germination, sperm quality, and fertilization. Journal of Reproduction & Infertility, 19(2), 69. www.ncbi.nlm.nih.gov/pmc/articles/pmc6010824
10355Roohani, N., Hurrell, R., Kelishadi, R. and Schulin, R. (2013). Zinc and its importance for human health: An integrative review. Journal of Research in Medical Sciences, 18(2), 144. www.ncbi.nlm.nih.gov/pmc/articles/PMC3724376
10356Betsy, A., Binitha, M. P. and Sarita, S. (2013). Zinc deficiency associated with hypothyroidism: An overlooked cause of severe alopecia. International Journal of Trichology, 5(1), 40. www.ncbi.nlm.nih.gov/pmc/articles/PMC3746228
10357Swardfager, W., Herrmann, N., Mazereeuw, G., Goldberger, K., Harimoto, T. and Lanctôt, K. L. (2013). Zinc in depression: A meta-analysis. Biological Psychiatry, 74(12), 872–8. www.sciencedirect.com/science/article/pii/S0006322313004514
10358Ranjbar, E. et al. (2013). Effects of zinc supplementation in patients with major depression: A randomized clinical trial. Iranian Journal of Psychiatry, 8(2), 73–9. www.ncbi.nlm.nih.gov/pmc/articles/PMC3796297
10359Solati, Z., Jazayeri, S., Tehrani-Doost, M., Mahmoodianfard, S. and Gohari, M. R. (2015). Zinc monotherapy increases serum brain-derived neurotrophic factor (BDNF) levels and decreases depressive symptoms in overweight or obese subjects: A double-blind, randomized, placebo-controlled trial. Nutritional Neuroscience, 18(4), 162–8. www.tandfonline.com/doi/abs/10.1179/1476830513Y.0000000105
10360Sauer, A. K., Hagmeyer, S. and Grabrucker, A. M. (2016). Zinc deficiency. In Erkekoglu, P. and Kocer-Gumusel, B. Nutritional Deficiency. Intact Open Science, London, 23–46. www.researchgate.net/profile/Andreas_Grabrucker/publication/305333901_Zinc_Deficiency/links/578904c808ae7a588ee857b4/Zinc-Deficiency.pdf
10361Australian Government National Health and Medical Research Council and New Zealand Ministry of Health. (2014). Zinc. Nutrient Reference Values for Australia and New Zealand.www.nrv.gov.au/nutrients/zinc
10362Saunders, A. V., Craig, W. J. and Baines, S. K. (2013). Zinc and vegetarian diets. Medical Journal of Australia, 199(4), S17–21. www.mja.com.au/journal/2013/199/4/zinc-and-vegetarian-diets
10363Hunt, J. R., Beiseigel, J. M. and Johnson, L. K. (2008). Adaptation in human zinc absorption as influenced by dietary zinc and bioavailability. American Journal of Clinical Nutrition, 87(5), 1336–45. academic.oup.com/ajcn/article-abstract/87/5/1336/4650794
10364Türk, M., Carlsson, N. G. and Sandberg, A. S. (1996). Reduction in the levels of phytate during wholemeal bread making; Effect of yeast and wheat phytases. Journal of Cereal Science, 23(3), 257–64. www.sciencedirect.com/science/article/pii/S0733521096900260
10365Lonnerdal, B. (2000). Dietary factors influencing zinc absorption. Journal of Nutrition, 130(5), 1378S–83S. academic.oup.com/jn/article-abstract/130/5/1378S/4686381
10366Hedren, E., Diaz, V. and Svanberg, U. (2002). Estimation of carotenoid accessibility from carrots determined by an in vitro digestion method. European Journal of Clinical Nutrition, 56(5), 425–30. www.nature.com/articles/1601329
10367Cornell University. Cooking tomatoes boosts disease-fighting power. ScienceDaily. 23 April 2002.www.sciencedaily.com/releases/2002/04/020422073341.htm
10368Carmody, R. N. et al. (2019). Cooking shapes the structure and function of the gut microbiome. Nature Microbiology, 4(12), 2052–63. www.nature.com/articles/s41564-019-0569-4
10369Yuan, G. F., Sun, B., Yuan, J. and Wang, Q. M. (2009). Effects of different cooking methods on health-promoting compounds of broccoli. Journal of Zhejiang University. Science B, 10(8), 580–8.link.springer.com/article/10.1631/jzus.B0920051
10370Xu, F., Zheng, Y., Yang, Z., Cao, S., Shao, X. and Wang, H. (2014). Domestic cooking methods affect the nutritional quality of red cabbage. Food Chemistry, 161, 162–7. www.sciencedirect.com/science/article/pii/S0308814614005706
10371Zeng, C. (2013). Effects of different cooking methods on the vitamin C content of selected vegetables. Nutrition & Food Science, 43(5), 438–43. www.emerald.com/insight/content/doi/10.1108/NFS-11-2012-0123/full/html
10372Song, K. and Milner, J. A. (2001). The influence of heating on the anticancer properties of garlic. Journal of Nutrition, 131(3), 1054S–7S. academic.oup.com/jn/article-abstract/131/3/1054S/4687116
10373Cavagnaro, P. F., Camargo, A., Galmarini, C. R. and Simon, P. W. (2007). Effect of cooking on garlic (Allium sativum L.) antiplatelet activity and thiosulfinates content. Journal of Agricultural and Food Chemistry, 55(4), 1280–8. pubs.acs.org/doi/abs/10.1021/jf062587s
10374Chiplonkar, S. A. and Agte, V. V. (2006). Predicting bioavailable zinc from lower phytate forms, folic acid and their interactions with zinc in vegetarian meals. Journal of the American College of Nutrition, 25(1), 26–33. www.tandfonline.com/doi/abs/10.1080/07315724.2006.10719511
10375Cook, N. R. et al. (2007). Long term effects of dietary sodium reduction on cardiovascular disease outcomes: Observational follow-up of the trials of hypertension prevention (TOHP). BMJ, 334(7599), 885. www.bmj.com/content/334/7599/885
10376Cook, N. R., Appel, L. J. and Whelton, P. K. (2016). Sodium intake and all-cause mortality over 20 years in the trials of hypertension prevention. Journal of the American College of Cardiology, 68(15), 1609–17. www.onlinejacc.org/content/68/15/1609
10377Fayet-Moore, F. et al. (2020). An analysis of the mineral composition of pink salt available in Australia. Foods, 9(10), 1490. www.mdpi.com/2304-8158/9/10/1490
10378American Heart Association. (2016). Shaking the salt habit to lower high blood pressure. American Heart Association.www.heart.org/en/health-topics/high-blood-pressure/changes-you-can-make-to-manage-high-blood-pressure/shaking-the-salt-habit-to-lower-high-blood-pressure
10379The George Institute for Global Health. (2019). Salt levels in meat alternatives in Australia (2010–2019). Report prepared for the Vichealth Salt Partnership, by Emalie Rosewarne and Clare Farrand, World Health Organization Collaborating Centre on Population Salt Reduction, The George Institute for Global Health, Sydney. www.georgeinstitute.org/sites/default/files/meat_alternatives_key_findings_report.pdf
10380Vitale, K. and Getzin, A. (2019). Nutrition and supplement update for the endurance athlete: Review and recommendations. Nutrients, 11(6), 1289. www.mdpi.com/2072-6643/11/6/1289
10381Burnett, A. J., Livingstone, K. M., Woods, J. L. and McNaughton, S. A. (2017). Dietary supplement use among Australian adults: Findings from the 2011–2012 National Nutrition and Physical Activity Survey. Nutrients, 9(11), 1248. www.mdpi.com/2072-6643/9/11/1248
10382National Institutes of Health Office of Dietary Supplements. (2021). Vitamin B12: Fact sheet for consumers. NIH.ods.od.nih.gov/factsheets/VitaminB12-Consumer
10383Australian Institute of Health and Welfare. (2018). Australia’s Health 2018. Australia’s Health series no. 16. AUS 221. AIHW, Australian Government, Canberra. www.aihw.gov.au/getmedia/7c42913d-295f-4bc9-9c24-4e44eff4a04a/aihw-aus-221.pdf
10384Kantor, E. D., Rehm, C. D., Du, M., White, E. and Giovannucci, E. L. (2016). Trends in dietary supplement use among US adults from 1999–2012. JAMA, 316(14), 1464–74. jamanetwork.com/journals/jama/article-abstract/2565748
10385Kreider, R. B. et al. (2017). International Society of Sports Nutrition position stand: Safety and efficacy of creatine supplementation in exercise, sport, and medicine. Journal of the International Society of Sports Nutrition, 14(1), 1–18. jissn.biomedcentral.com/articles/10.1186/s12970-017-0173-z
10386Kaviani, M., Shaw, K. and Chilibeck, P. D. (2020). Benefits of creatine supplementation for vegetarians compared to omnivorous athletes: A systematic review. International Journal of Environmental Research and Public Health, 17(9), 3041. www.mdpi.com/1660-4601/17/9/3041
10387Watanabe, A., Kato, N. and Kato, T. (2002). Effects of creatine on mental fatigue and cerebral hemoglobin oxygenation. Neuroscience Research, 42(4), 279–85. www.sciencedirect.com/science/article/pii/S016801020200007X
10388Benton, D. and Donohoe, R. (2011). The influence of creatine supplementation on the cognitive functioning of vegetarians and omnivores. British Journal of Nutrition, 105(7), 1100–5. www.ncbi.nlm.nih.gov/pubmed/21118604
10389Rae, C., Digney, A. L., McEwan, S. R. and Bates, T. C. (2003). Oral creatine monohydrate supplementation improves brain performance: A double-blind, placebo-controlled, cross-over trial. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1529), 2147–50. royalsocietypublishing.org/doi/abs/10.1098/rspb.2003.2492
10390Karimi, R., Fitzgerald, T. P. and Fisher, N. S. (2012). A quantitative synthesis of mercury in commercial seafood and implications for exposure in the United States. Environmental Health Perspectives, 120(11), 1512–19. ehp.niehs.nih.gov/doi/abs/10.1289/ehp.1205122
10391Szkoda, J., Durkalec, M., Nawrocka, A. and Michalski, M. (2015). Mercury concentration in bivalve molluscs. Bulletin of the Veterinary Institute in Pulawy, 59(3), 357–60. pubag.nal.usda.gov/catalog/4808953
10392Cox, C. Consider the oyster. Slate. 7 April 2010. slate.com/human-interest/2010/04/it-s-ok-for-vegans-to-eat-oysters.html
10393Hill, S. (2021). Eating oysters and mussels as a vegan. Plant Proof. plantproof.com/eating-oysters-and-mussels-as-a-vegan
10394Jacquet, J. Why oysters, mussels and clams could hold the key to more ethical fish farming. Guardian. 24 January 2017. www.theguardian.com/sustainable-business/2017/jan/23/aquaculture-bivalves-oysters-factory-farming-environment
10395McVeigh, K. Climate crisis and antibiotic use could ‘sink’ fish farming industry – report. Guardian. 5 June 2019. www.theguardian.com/environment/2019/jun/05/climate-crisis-and-antibiotic-use-could-sink-fish-farming-industry-report
10396Delaware Sea Grant – A joint project by the Universities of Oregon State, Cornell, Delaware, Rhode Island, Florida, and California, and the Community Seafood Initiative. Does seafood have hormones, antibiotics, or drugs? Seafood Health Facts. www.seafoodhealthfacts.org/faq/does-seafood-have-hormones-antibiotics-or-drugs
10397Leproult, R., Colecchia, E. F., L’Hermite-Balériaux, M. and Van Cauter, E. (2001). Transition from dim to bright light in the morning induces an immediate elevation of cortisol levels. Journal of Clinical Endocrinology & Metabolism, 86(1), 151–7. academic.oup.com/jcem/article-abstract/86/1/151/2841140
10398Manoogian, E. N., Chaix, A. and Panda, S. (2019). When to eat: The importance of eating patterns in health and disease. Journal of Biological Rhythms, 34(6), 579–81. journals.sagepub.com/doi/full/10.1177/0748730419892105
10399Gu, C. et al. (2020). Metabolic effects of late dinner in healthy volunteers: A randomized crossover clinical trial. Journal of Clinical Endocrinology & Metabolism, 105(8), 2789–802. academic.oup.com/jcem/advance-article-abstract/doi/10.1210/clinem/dgaa354/5855227
10400Dashti, H. S., Gómez-Abellán, P., Qian, J., Esteban, A., Morales, E., Scheer, F. A. and Garaulet, M. (2021). Late eating is associated with cardiometabolic risk traits, obesogenic behaviors, and impaired weight loss. American Journal of Clinical Nutrition, 113(1), 154–61. academic.oup.com/ajcn/article/113/1/154/5918527
10401Zitting, K. M. et al. (2018). Human resting energy expenditure varies with circadian phase. Current Biology, 28(22), 3685–90. www.sciencedirect.com/science/article/pii/S0960982218313344
10402Richter, J., Herzog, N., Janka, S., Baumann, T., Kistenmacher, A. and Oltmanns, K. M. (2020). Twice as high diet-induced thermogenesis after breakfast vs dinner on high-calorie as well as low-calorie meals. Journal of Clinical Endocrinology & Metabolism, 105(3), e211–21. academic.oup.com/jcem/article-abstract/105/3/e211/5740411
10403Wilkinson, M. J. et al. (2020). Ten-hour time-restricted eating reduces weight, blood pressure, and atherogenic lipids in patients with metabolic syndrome. Cell Metabolism, 31(1), 92–104. www.sciencedirect.com/science/article/pii/S1550413119306114
10404LeCheminant, J. D., Christenson, E., Bailey, B. W. and Tucker, L. A. (2013). Restricting night-time eating reduces daily energy intake in healthy young men: A short-term cross-over study. British Journal of Nutrition, 110(11), 2108–13. www.cambridge.org/core/journals/british-journal-of-nutrition/article/restricting-nighttime-eating-reduces-daily-energy-intake-in-healthy-young-men-a-shortterm-crossover-study/3627087601F148E8D16163468FCB3F05
10405Wilkinson, M., Manoogian, E., Zadourian, A., Lo, H., Panda, S. and Taub, P. (2019). Time-restricted eating promotes weight loss and lowers blood pressure in patients with metabolic syndrome. Journal of the American College of Cardiology, 73(9Supp1), 1843. www.jacc.org/doi/full/10.1016/S0735-1097%2819%2932449-0
10406Gill, S. and Panda, S. (2015). A smartphone app reveals erratic diurnal eating patterns in humans that can be modulated for health benefits. Cell Metabolism, 22(5), 789–98. www.sciencedirect.com/science/article/pii/S1550413115004623
10407Chow, L. S., Manoogian, E., Alvear, A. C., Wang, Q., Panda, S. and Mashek, D. G. (2019). 2076-P: Time restricted eating (TRE) promotes weight loss, alters body composition, and improves metabolic parameters in overweight humans. Diabetes, 68(Supplement 1). diabetes.diabetesjournals.org/content/68/Supplement_1/2076-P
10408Walker, W. H., Walton, J. C., DeVries, A. C. and Nelson, R. J. (2020). Circadian rhythm disruption and mental health. Translational Psychiatry, 10(1), 1–13. www.nature.com/articles/s41398-020-0694-0
10409Voigt, R. M., Forsyth, C. B. and Keshavarzian, A. (2013). Circadian disruption: Potential implications in inflammatory and metabolic diseases associated with alcohol. Alcohol Research: Current Reviews, 35(1), 87–96. www.ncbi.nlm.nih.gov/pmc/articles/PMC3860420
10410Serin, Y. and Tek, N. A. (2019). Effect of circadian rhythm on metabolic processes and the regulation of energy balance. Annals of Nutrition and Metabolism, 74(4), 322–30. www.karger.com/Article/Abstract/500071
10411Madjd, A., Taylor, M. A., Delavari, A., Malekzadeh, R., Macdonald, I. A. and Farshchi, H. R. (2016). Beneficial effect of high energy intake at lunch rather than dinner on weight loss in healthy obese women in a weight-loss program: A randomized clinical trial. American Journal of Clinical Nutrition, 104(4), 982–9. academic.oup.com/ajcn/article/104/4/982/4557122
10412Australian Government National Health and Medical Research Council and New Zealand Ministry of Health. (2014). Water. Nutrient Reference Values for Australia and New Zealand.www.nrv.gov.au/nutrients/water
10413Popkin, B. M., D’Anci, K. E. and Rosenberg, I. H. (2010). Water, hydration, and health. Nutrition Reviews, 68(8), 439–58. academic.oup.com/nutritionreviews/article-abstract/68/8/439/1841926
10414Poole, R., Kennedy, O. J., Roderick, P., Fallowfield, J. A., Hayes, P. C. and Parkes, J. (2017). Coffee consumption and health: Umbrella review of meta-analyses of multiple health outcomes. BMJ, 359, j5024. www.bmj.com/content/359/bmj.j5024
10415van Dam, R. M. and Hu, F. B. (2005). Coffee consumption and risk of type 2 diabetes: A systematic review. JAMA, 294(1), 97–104. jamanetwork.com/journals/jama/article-abstract/201177
10416Freeman, A. M. et al. (2018). A clinician’s guide for trending cardiovascular nutrition controversies: Part II. Journal of the American College of Cardiology, 72(5), 553–68. www.jacc.org/doi/full/10.1016/j.jacc.2018.05.030
10417Zhang, C., Qin, Y. Y., Wei, X., Yu, F. F., Zhou, Y. H. and He, J. (2015). Tea consumption and risk of cardiovascular outcomes and total mortality: A systematic review and meta-analysis of prospective observational studies. European Journal of Epidemiology, 30, 103–13. link.springer.com/article/10.1007/s10654-014-9960-x
10418Jalalyazdi, M., Ramezani, J., Izadi-Moud, A., Madani-Sani, F., Shahlaei, S. and Ghiasi, S. S. (2019). Effect of hibiscus sabdariffa on blood pressure in patients with stage 1 hypertension. Journal of Advanced Pharmaceutical Technology & Research, 10(3), 107. www.ncbi.nlm.nih.gov/pmc/articles/PMC6621350
10419Heaney, R. P. (2002). Effects of caffeine on bone and the calcium economy. Food and Chemical Toxicology, 40(9), 1263–70. www.sciencedirect.com/science/article/pii/S0278691502000947
10420American College of Obstetricians and Gynecologists Clinical Guidance Committee. (2010). Moderate caffeine consumption during pregnancy: Committee opinion number 462. American College of Obstetricians and Gynecologists.www.acog.org/clinical/clinical-guidance/committee-opinion/articles/2010/08/moderate-caffeine-consumption-during-pregnancy
10421van Dam, R. M., Hu, F. B. and Willett, W. C. (2020). Coffee, caffeine, and health. New England Journal of Medicine, 383(4), 369–78. www.nejm.org/doi/full/10.1056/NEJMra1816604
10422Ordovas, J. M., Ferguson, L. R., Tai, E. S. and Mathers, J. C. (2018). Personalised nutrition and health. BMJ, 361, k2173. www.bmj.com/content/361/bmj.k2173
10423Australian Bureau of Statistics. (2018). National Health Survey: First results. Australian Bureau of Statistics (ABS), Australian Government, Canberra. www.abs.gov.au/statistics/health/health-conditions-and-risks/national-health-survey-first-results/2017-18
10424Westerterp, K. R. (2004). Diet induced thermogenesis. Nutrition & Metabolism, 1(1), 1–5. nutritionandmetabolism.biomedcentral.com/articles/10.1186/1743-7075-1-5
10425Dennis, E. A., Dengo, A. L., Comber, D. L., Flack, K. D., Savla, J., Davy, K. P. and Davy, B. M. (2010). Water consumption increases weight loss during a hypocaloric diet intervention in middle‐aged and older adults. Obesity, 18(2), 300–7. onlinelibrary.wiley.com/doi/abs/10.1038/oby.2009.235
10426Malik, V. S., Schulze, M. B. and Hu, F. B. (2006). Intake of sugar-sweetened beverages and weight gain: A systematic review. American Journal of Clinical Nutrition, 84(2), 274–88. academic.oup.com/ajcn/article-abstract/84/2/274/4881805
10427Jääskeläinen, A., Nevanperä, N., Remes, J., Rahkonen, F., Järvelin, M. R. and Laitinen, J. (2014). Stress-related eating, obesity and associated behavioural traits in adolescents: A prospective population-based cohort study. BMC Public Health, 14(1), 321. link.springer.com/article/10.1186/1471-2458-14-321
10428Wolfson, J. and Bleich, S. (2015). Is cooking at home associated with better diet quality or weight-loss intention? Public Health Nutrition, 18(8), 1397–406. www.cambridge.org/core/journals/public-health-nutrition/article/is-cooking-at-home-associated-with-better-diet-quality-or-weightloss-intention/B2C8C168FFA377DD2880A217DB6AF26F
10429Slater, G. J., Dieter, B. P., Marsh, D. J., Helms, E. R., Shaw, G. and Iraki, J. (2019). Is an energy surplus required to maximize skeletal muscle hypertrophy associated with resistance training. Frontiers in Nutrition, 6, 131. www.frontiersin.org/articles/10.3389/fnut.2019.00131
10430Norton, L. E., Wilson, G. J., Layman, D. K., Moulton, C. J. and Garlick, P. J. (2012). Protein distribution affects muscle mass based on differences in postprandial muscle protein synthesis and plasma leucine in rats. Journal of the International Society of Sports Nutrition, 9(1), P23. jissn.biomedcentral.com/articles/10.1186/1550-2783-9-S1-P23
10431Mamerow, M. M. et al. (2014). Dietary protein distribution positively influences 24-h muscle protein synthesis in healthy adults. Journal of Nutrition, 144(6), 876–80. academic.oup.com/jn/article-abstract/144/6/876/4589937
10432Schoenfeld, B. J. and Aragon, A. A. (2018). How much protein can the body use in a single meal for muscle-building? Implications for daily protein distribution. Journal of the International Society of Sports Nutrition, 15(1), 1–6. jissn.biomedcentral.com/articles/10.1186/s12970-018-0215-1
10433Trommelen, J., Betz, M. W. and van Loon, L. J. (2019). The muscle protein synthetic response to meal ingestion following resistance-type exercise. Sports Medicine, 49(2), 185–97. link.springer.com/article/10.1007/s40279-019-01053-5
10434Moore, D. R. (2019). Maximizing post-exercise anabolism: The case for relative protein intakes. Frontiers in Nutrition, 6, 147. www.frontiersin.org/articles/10.3389/fnut.2019.00147
10435Yasuda, J., Tomita, T., Arimitsu, T. and Fujita, S. (2020). Evenly distributed protein intake over 3 meals augments resistance exercise–induced muscle hypertrophy in healthy young men. Journal of Nutrition, 150(7), 1845–51. academic.oup.com/jn/article-abstract/doi/10.1093/jn/nxaa101/5823851
10436Joy, J. M. et al. (2013). The effects of 8 weeks of whey or rice protein supplementation on body composition and exercise performance. Nutrition Journal, 12(1), 1–7. nutritionj.biomedcentral.com/articles/10.1186/1475-2891-12-86
10437Tang, J. E., Moore, D. R., Kujbida, G. W., Tarnopolsky, M. A. and Phillips, S. M. (2009). Ingestion of whey hydrolysate, casein, or soy protein isolate: Effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. Journal of Applied Physiology, 107(3), 987–92. journals.physiology.org/doi/full/10.1152/japplphysiol.00076.2009
10438Banaszek, A., Townsend, J. R., Bender, D., Vantrease, W. C., Marshall, A. C. and Johnson, K. D. (2019). The effects of whey vs. pea protein on physical adaptations following 8 weeks of high-intensity functional training (HIFT): A pilot study. Sports, 7(1), 12. www.mdpi.com/2075-4663/7/1/12
10439Moon, J. M. et al. (2020). Effects of daily 24-gram doses of rice or whey protein on resistance training adaptations in trained males. Journal of the International Society of Sports Nutrition, 17(1), 1–15. link.springer.com/article/10.1186/s12970-020-00394-1
10440Babault, N. et al. (2015). Pea proteins oral supplementation promotes muscle thickness gains during resistance training: A double-blind, randomized, placebo-controlled clinical trial vs. whey protein. Journal of the International Society of Sports Nutrition, 12(1), 1–9. jissn.biomedcentral.com/articles/10.1186/s12970-014-0064-5
10441Messina, M., Lynch, H., Dickinson, J. M. and Reed, K. E. (2018). No difference between the effects of supplementing with soy protein versus animal protein on gains in muscle mass and strength in response to resistance exercise. International Journal of Sport Nutrition and Exercise Metabolism, 28(6), 674–85. journals.humankinetics.com/view/journals/ijsnem/28/6/article-p674.xml
10442Lynch, H. M. et al. (2020). No significant differences in muscle growth and strength development when consuming soy and whey protein supplements matched for leucine following a 12 week resistance training program in men and women: A randomized trial. International Journal of Environmental Research and Public Health, 17(11), 3871. www.mdpi.com/1660-4601/17/11/3871
10443Gorissen, S., Crombag, J., Senden, J., Waterval, W., Bierau, J., Verdijk, L. B. and van Loon, L. (2018). Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids, 50(12), 1685–95. www.ncbi.nlm.nih.gov/pmc/articles/PMC6245118
10444Cole, B. F. et al. (2007). Folic acid for the prevention of colorectal adenomas: A randomized clinical trial. JAMA, 297(21), 2351–9. jamanetwork.com/journals/jama/article-abstract/207344
10445Figueiredo, J. C. et al. (2009). Folic acid and risk of prostate cancer: Results from a randomized clinical trial. Journal of the National Cancer Institute, 101(6), 432–5. academic.oup.com/jnci/article-abstract/101/6/432/997701
10446Mullen, W., Stewart, A. J., Lean, M. E., Gardner, P., Duthie, G. G. and Crozier, A. (2002). Effect of freezing and storage on the phenolics, ellagitannins, flavonoids, and antioxidant capacity of red raspberries. Journal of Agricultural and Food Chemistry, 50(18), 5197–201. pubs.acs.org/doi/abs/10.1021/jf020141f
10447Bouzari, A., Holstege, D. and Barrett, D. M. (2015). Vitamin retention in eight fruits and vegetables: A comparison of refrigerated and frozen storage. Journal of Agricultural and Food Chemistry, 63(3), 957–62. pubs.acs.org/doi/abs/10.1021/jf5058793
10448Crimarco, A. et al. (2020). A randomized crossover trial on the effect of plant-based compared with animal-based meat on trimethylamine-N-oxide and cardiovascular disease risk factors in generally healthy adults: Study With Appetizing Plantfood-Meat Eating Alternative Trial (SWAP-MEAT). American Journal of Clinical Nutrition, 112(5), 1188–99. academic.oup.com/ajcn/article-abstract/112/5/1188/5890315
10449Bittman, M. (2013). Vegan Before 6: Lose weight and restore your health with the flexible diet you can really stick to. Hachette, London. www.hachette.com.au/mark-bittman/vegan-before-6-lose-weight-and-restore-your-health-with-the-flexible-diet-you-can-really-stick-to
10450Kim, B. F. et al. (2020). Country-specific dietary shifts to mitigate climate and water crises. Global Environmental Change, 62, 101926. www.sciencedirect.com/science/article/pii/S0959378018306101
10451Ritchie, H. and Roser, M. (2020). Environmental impacts of food production. Our World in Data. ourworldindata.org/environmental-impacts-of-food
10452Parker, R. W., Blanchard, J. L., Gardner, C., Green, B. S., Hartmann, K., Tyedmers, P. H. and Watson, R. A. (2018). Fuel use and greenhouse gas emissions of world fisheries. Nature Climate Change, 8(4), 333–7. www.nature.com/articles/s41558-018-0117-x