Chapter | Reference Number | Content | URL |
---|---|---|---|
i | 1 | Adabag, A. S., Luepker, R. V., Roger, V. L. and Gersh, B. J. (2010). Sudden cardiac death: Epidemiology and risk factors. Nature Reviews Cardiology, 7(4), 216–25. | www.ncbi.nlm.nih.gov/pmc/articles/PMC5014372 |
i | 2 | Katz, D. L. (2019). Plant-based diets for reversing disease and saving the planet: Past, present, and future. Advances in Nutrition, 10(Supplement_4), S304–7. | academic.oup.com/advances/article/10/Supplement_4/S304/5624055 |
i | 3 | Mbow, C., Rosenzweig, C. et al. (2019). Food Security in Shukla, P. R. et al. (eds) Climate Change and Land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. IPCC, Geneva. | www.ipcc.ch/site/assets/uploads/sites/4/2020/02/SRCCL-Chapter-5.pdf |
i | 4 | Gerber, P.J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A. and Tempio, G. (2013). Tackling climate change through livestock – A global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome. | www.fao.org/3/a-i3437e.pdf |
i | 5 | Poore, J. and Nemecek, T. (2018). Reducing food’s environmental impacts through producers and consumers. Science, 360(6392), 987–92. | science.sciencemag.org/content/360/6392/987 |
i | 6 | Livestock, Environment and Development (LEAD) Initiative and Food and Agriculture Organization of the United Nations (FAO). (2006). Livestock’s Long Shadow: Environmental issues and options. Food and Agriculture Organization of the United Nations (FAO), Rome. | www.fao.org/3/a0701e/a0701e.pdf |
i | 7 | Ripple, W. J. et al. and 15,364 scientist signatories from 184 countries. (2017). World scientists’ warning to humanity: A second notice. BioScience, 67(12), 1026–28. | academic.oup.com/bioscience/article-abstract/67/12/1026/4605229 |
i | 8 | 2021 Australia Animal Kill Clock. Animal Clock. | animalclock.org/au |
i | 9 | Australian Institute of Health and Welfare. (2020). International health data comparisons, 2020: Life expectancy, mortality and causes of death. AIHW, Australian Government, Canberra. | www.aihw.gov.au/reports/international-comparisons/international-health-data-comparisons-2018/contents/life-expectancy-mortality-and-causes-of-death |
i | 10 | Australian Institute of Health and Welfare. (2020). Australia’s Health 2020: In brief. Australia’s Health Series no. 17, Cat. no. AUS 232. AIHW, Australian Government, Canberra. | www.aihw.gov.au/getmedia/2aa9f51b-dbd6-4d56-8dd4-06a10ba7cae8/aihw-aus-232.pdf.aspx |
i | 11 | Roser, M., Ortiz-Ospina, E. and Ritchie, H. (2019). Life expectancy. Our World in Data. | ourworldindata.org/life-expectancy |
i | 12 | World Health Organization. ‘Ageing well’ must be a global priority. WHO Media centre. 6 November 2014. | www.who.int/mediacentre/news/releases/2014/lancet-ageing-series/en |
i | 13 | Australian Institute of Health and Welfare. (2020). Chronic disease: Overview. AIHW, Australian Government, Canberra. | www.aihw.gov.au/reports-data/health-conditions-disability-deaths/chronic-disease/overview |
i | 14 | World Health Organization. Noncommunicable diseases. WHO Newsroom. 1 June 2018. | www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases |
i | 15 | Australian Bureau of Statistics. (2018). National Health Survey: First results. Australian Bureau of Statistics (ABS), Australian Government, Canberra. | www.abs.gov.au/statistics/health/health-conditions-and-risks/national-health-survey-first-results/2017-18 |
i | 16 | Hong, Y. M. (2010). Atherosclerotic cardiovascular disease beginning in childhood. Korean Circulation Journal, 40(1), 1–9. | www.ncbi.nlm.nih.gov/pmc/articles/PMC2812791 |
i | 17 | Napoli, C., D’Armiento, F. P., Mancini, F. P., Postiglione, A., Witztum, J. L., Palumbo, G. and Palinski, W. (1997). Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal hypercholesterolemia. Intimal accumulation of low density lipoprotein and its oxidation precede monocyte recruitment into early atherosclerotic lesions. Journal of Clinical Investigation, 100(11), 2680–90. | www.jci.org/articles/view/119813 |
i | 18 | Dementia Australia. Number of people with dementia on the rise. Dementia Australia. 28 February 2018. | www.dementia.org.au/media-releases/2018/Number-of-people-with-dementia-on-the-rise |
i | 19 | Australian Institute of Health and Welfare. (2020). Chronic conditions and multimorbidity. AIHW, Australian Government, Canberra. | www.aihw.gov.au/reports/australias-health/chronic-conditions-and-multimorbidity |
i | 20 | Willett, W. C. (2002). Balancing life-style and genomics research for disease prevention. Science, 296(5568), 695–8. | science.sciencemag.org/content/296/5568/695 |
i | 21 | Herskind, A. M., McGue, M., Holm, N. V., Sörensen, T. I., Harvald, B. and Vaupel, J. W. (1996). The heritability of human longevity: A population-based study of 2872 Danish twin pairs born 1870–1900. Human Genetics, 97(3), 319–23. | link.springer.com/article/10.1007/BF02185763 |
i | 22 | Robertson, T. L. et al. (1977). Epidemiologic studies of coronary heart disease and stroke in Japanese men living in Japan, Hawaii and California. Incidence of myocardial infarction and death from coronary heart disease. American Journal of Cardiology, 39(2), 239–43. | pubmed.ncbi.nlm.nih.gov/835482 |
i | 23 | Herskind, A. M., McGue, M., Holm, N. V., Sörensen, T. I., Harvald, B. and Vaupel, J. W. (1996). The heritability of human longevity: A population-based study of 2872 Danish twin pairs born 1870–1900. Human Genetics, 97(3), 319–23. | link.springer.com/article/10.1007/BF02185763 |
i | 24 | Dernini, S. (2011). The erosion and the renaissance of the Mediterranean diet: A sustainable cultural resource. Quaderns de la Mediterrania, 16, 75–82. | www.iemed.org/observatori/arees-danalisi/arxius-adjunts/qm-16-originals/derninisandro_erosion%20and%20the%20renaissance%20of%20Meddiet_qm16.pdf |
i | 25 | Delicano, R. A. et al. (2020). The shared risk of diabetes between dog and cat owners and their pets: Register based cohort study. BMJ, 371, m4337. | www.bmj.com/content/371/bmj.m4337 |
i | 26 | Fernandes, J. C. and GBD 2015 Obesity Collaborators. (2017). Health effects of overweight and obesity in 195 countries over 25 years. New England Journal of Medicine, 77(1), 13–27. | www.nejm.org/doi/full/10.1056/NEJMoa1614362 |
i | 27 | Zheng, Y. et al. (2017). Associations of weight gain from early to middle adulthood with major health outcomes later in life. JAMA, 318(3), 255–69. | jamanetwork.com/journals/jama/article-abstract/2643761 |
i | 28 | Kramer, C. K., Zinman, B. and Retnakaran, R. (2013). Are metabolically healthy overweight and obesity benign conditions? A systematic review and meta-analysis. Annals of Internal Medicine, 159(11), 758–69. | www.acpjournals.org/doi/abs/10.7326/0003-4819-159-11-201312030-00008 |
i | 29 | Abdullah, A., Peeters, A., de Courten, M. and Stoelwinder, J. (2010). The magnitude of association between overweight and obesity and the risk of diabetes: A meta-analysis of prospective cohort studies. Diabetes Research and Clinical Practice, 89(3), 309–19. | pubmed.ncbi.nlm.nih.gov/20493574 |
i | 30 | Aune, D., Norat, T. and Vatten, L. J. (2015). Body mass index, abdominal fatness and the risk of gallbladder disease. European Journal of Epidemiology, 30(9), 1009–19. | pubmed.ncbi.nlm.nih.gov/26374741 |
i | 31 | Aune, D. et al. (2015). Anthropometric factors and endometrial cancer risk: A systematic review and dose-response meta-analysis of prospective studies. Annals of Oncology, 26(8), 1635–48. | www.annalsofoncology.org/article/S0923-7534(19)31836-8 |
i | 32 | Field, A. E., Coakley, E. H., Must, A., Spadano, J. L., Laird, N., Dietz, W. H., Rimm, E. and Colditz, G. A. (2001). Impact of overweight on the risk of developing common chronic diseases during a 10-year period. Archives of Internal Medicine, 161(13), 1581– | pubmed.ncbi.nlm.nih.gov/11434789 |
i | 33 | Anstey, K. J., Cherbuin, N., Budge, M. and Young, J. (2011). Body mass index in midlife and late‐life as a risk factor for dementia: A meta‐analysis of prospective studies. Obesity Reviews, 12(5), e426–37. | onlinelibrary.wiley.com/doi/full/10.1111/j.1467-789X.2010.00825 |
i | 34 | Li, L., Gan, Y., Li, W., Wu, C. and Lu, Z. (2016). Overweight, obesity and the risk of gallbladder and extrahepatic bile duct cancers: A meta‐analysis of observational studies. Obesity, 24(8), 1786–1802. | onlinelibrary.wiley.com/doi/abs/10.1002/oby.21505 |
i | 35 | Munsell, M. F., Sprague, B. L., Berry, D. A., Chisholm, G. and Trentham-Dietz, A. (2014). Body mass index and breast cancer risk according to postmenopausal estrogen-progestin use and hormone receptor status. Epidemiologic Reviews, 36(1), 114–36. | academic.oup.com/epirev/article-abstract/36/1/114/566646 |
i | 36 | Ma, Y., Yang, Y., Wang, F., Zhang, P., Shi, C., Zou, Y. and Qin, H. (2013). Obesity and risk of colorectal cancer: A systematic review of prospective studies. PLOS One, 8(1), e53916. | journals.plos.org/plosone/article?id=10.1371/journal.pone.0053916 |
i | 37 | Aune, D. et al. (2016). BMI and all cause mortality: Systematic review and non-linear dose-response meta-analysis of 230 cohort studies with 3.74 million deaths among 30.3 million participants. BMJ, 353, i2156. | www.bmj.com/content/353/bmj.i2156 |
i | 38 | Sedlmeier, A. M. et al. (2021). Relation of body fat mass and fat-free mass to total mortality: Results from 7 prospective cohort studies. American Journal of Clinical Nutrition. | academic.oup.com/ajcn/advance-article-abstract/doi/10.1093/ajcn/nqaa339/6092216 |
i | 39 | Adams, K. F. et al. (2006). Overweight, obesity, and mortality in a large prospective cohort of persons 50 to 71 years old. New England Journal of Medicine, 355(8), 763–78. | pubmed.ncbi.nlm.nih.gov/16926275 |
i | 40 | Di Angelantonio, E. et al. (2016). Body-mass index and all-cause mortality: Individual-participant-data meta-analysis of 239 prospective studies in four continents. The Lancet, 388(10046), 776–86. | pubmed.ncbi.nlm.nih.gov/27423262 |
i | 41 | World Health Organization. Obesity and overweight. WHO Newsroom. 1 April 2020. | www.who.int/news-room/fact-sheets/detail/obesity-and-overweight |
i | 42 | Australian Institute of Health and Welfare. (2020). Overweight & obesity: Overview. AIHW, Australian Government, Canberra. | www.aihw.gov.au/reports-data/behaviours-risk-factors/overweight-obesity/overview |
i | 43 | Branca, F. et al. (2019). Transforming the food system to fight non-communicable diseases. BMJ, 364, l296. | www.bmj.com/content/364/bmj.l296 |
i | 44 | Public Health Association of Australia, National Heart Foundation of Australia, Dietitians Association of Australia and Nutrition Australia. (2017). Joint policy statement: Towards a national nutrition policy for Australia. Public Health Association of Australia. | www.phaa.net.au/documents/item/1987 |
Chapter | Reference Number | Content | URL |
---|---|---|---|
Chapter 1 | 1 | Gakidou, E. et al. (2017). Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. The Lancet, 390(10100), 1345–1422. | https://www.sciencedirect.com/science/article/pii/S0140673617323668 |
Chapter 1 | 2 | Branca, F. et al. (2019). Transforming the food system to fight non-communicable diseases. BMJ, 364, l296. | www.bmj.com/content/364/bmj.l296 |
Chapter 1 | 3 | Afshin, A. et al. (2019). Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. The Lancet, 393(10184), 1958–72. | www.sciencedirect.com/science/article/pii/S0140673619300418 |
Chapter 1 | 4 | Machado, P. P. et al. (2019). Ultra-processed foods and recommended intake levels of nutrients linked to non-communicable diseases in Australia: Evidence from a nationally representative cross-sectional study. BMJ Open, 9(8), e029544. | bmjopen.bmj.com/content/9/8/e029544 |
Chapter 1 | 5 | Australian Bureau of Statistics. Media release: Consumption of added sugars exceeds recommendations. 27 April 2016. | www.abs.gov.au/ausstats/abs@.nsf/Lookup/4364.0.55.011main+features12011-12 |
Chapter 1 | 6 | Ritchie, H. and Roser, M. (2019). Meat and Dairy Production. Our World in Data. | ourworldindata.org/meat-production |
Chapter 1 | 7 | Australian Bureau of Statistics. (2018). National Health Survey: First results. Australian Bureau of Statistics (ABS), Australian Government, Canberra. | www.abs.gov.au/statistics/health/health-conditions-and-risks/national-health-survey-first-results/2017-18 |
Chapter 1 | 8 | Fayet-Moore, F., Cassettari, T., Tuck, K., McConnell, A. and Petocz, P. (2018). Dietary fibre intake in Australia. Paper I: Associations with demographic, socio-economic, and anthropometric factors. Nutrients, 10(5), 599. | www.mdpi.com/2072-6643/10/5/599 |
Chapter 1 | 1 | Branca, F. et al. (2019). Transforming the food system to fight non-communicable diseases. BMJ, 364, l296. | www.bmj.com/content/364/bmj.l296 |
Chapter 1 | 2 | Moodie, R. et al. (2013). Profits and pandemics: Prevention of harmful effects of tobacco, alcohol, and ultra-processed food and drink industries. The Lancet, 381(9867), 670–9. | www.sciencedirect.com/science/article/pii/S0140673612620893 |
Chapter 1 | 3 | Hueston, W. and McLeod, A. (2012). Overview of the Global Food System: Changes over time/space and lessons for future food safety in Improving Food Safety Through a One Health Approach: Workshop summary. | www.ncbi.nlm.nih.gov/books/NBK114491 |
Chapter 1 | 4 | Wilder, R. M. (1956). A brief history of the enrichment of flour and bread. Journal of the American Medical Association, 162(17), 1539–41. | jamanetwork.com/journals/jama/article-abstract/319273 |
Chapter 1 | 5 | Bishai, D. and Nalubola, R. (2002). The history of food fortification in the United States: Its relevance for current fortification efforts in developing countries. Economic Development and Cultural Change, 51(1), 37–53. | www.journals.uchicago.edu/doi/full/10.1086/345361 |
Chapter 1 | 6 | Backstrand, J. R. (2002). The history and future of food fortification in the United States: A public health perspective. Nutrition Reviews, 60(1), 15–26. | academic.oup.com/nutritionreviews/article-abstract/60/1/15/1930396 |
Chapter 1 | 7 | Food and Agriculture Organization of the United Nations. (2013). Food wastage footprint: Full-cost accounting: Final report. FAO. | www.fao.org/3/a-i3991e.pdf |
Chapter 1 | 8 | Robertson, N. M., Sacks, G. and Miller, P. G. (2019). The revolving door between government and the alcohol, food and gambling industries in Australia. Public Health Research and Practice, 29(3), 2931921. | www.phrp.com.au/wp-content/uploads/2019/09/PHRP2931921.pdf |
Chapter 1 | 9 | Mialon, M., Swinburn, B., Allender, S. and Sacks, G. (2017). ‘Maximising shareholder value’: A detailed insight into the corporate political activity of the Australian food industry. Australian and New Zealand Journal of Public Health, 41(2), 165–71. | onlinelibrary.wiley.com/doi/abs/10.1111/1753-6405.12639 |
Chapter 1 | 10 | Campbell, N., Mialon, M., Reilly, K., Browne, S. and Finucane, F. M. (2020). How are frames generated? Insights from the industry lobby against the sugar tax in Ireland. Social Science & Medicine, 264, 113215. | www.sciencedirect.com/science/article/pii/S0277953620304342 |
Chapter 1 | 11 | Petersen, A. New U.S. dietary guidelines reject recommendation to cut sugar, alcohol intake limit. Wall Street Journal. 29 December 2020. | www.wsj.com/articles/new-u-s-dietary-guidelines-reject-recommendation-to-cut-sugar-alcohol-intake-11609254000 |
Chapter 1 | 12 | Alberici, E. Sugar tax and the power of big business: How influence trumps evidence in politics. ABC News. 24 January 2018. | www.abc.net.au/news/2018-01-24/sugar-tax-and-the-power-of-big-business/9353626 |
Chapter 1 | 13 | Obesity Policy Coalition. (2019). Policy brief: The case for a healthy levy on sugary drinks. Obesity Policy Coalition, Melbourne. | www.opc.org.au/downloads/policy-briefs/the-case-for-australian-tax-sugar-sweetened-beverages.pdf |
Chapter 1 | 14 | Watson, W. L., Lau, V., Wellard, L., Hughes, C. and Chapman, K. (2017). Advertising to children initiatives have not reduced unhealthy food advertising on Australian television. Journal of Public Health, 39(4), 787–92. | academic.oup.com/jpubhealth/article-abstract/39/4/787/2966185 |
Chapter 1 | 15 | Cobiac, L. J., Tam, K., Veerman, L. and Blakely, T. (2017). Taxes and subsidies for improving diet and population health in Australia: A cost-effectiveness modelling study. PLOS Medicine, 14(2), e1002232. | journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1002232 |
Chapter 1 | 16 | Baker, P. and Friel, S. (2016). Food systems transformations, ultra-processed food markets and the nutrition transition in Asia. Globalization and Health, 12(1), 80. | link.springer.com/article/10.1186/s12992-016-0223-3 |
Chapter 1 | 17 | Monteiro, C. A. and Cannon, G. (2012). The impact of transnational ‘big food’ companies on the South: A view from Brazil. PLOS Medicine, 9(7), e1001252. | journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1001252 |
Chapter 1 | 18 | Foote, C. Revolving doors: Want a high-paid job at the bank? Become a politician. Michael West Media. 27 May 2020. | www.michaelwest.com.au/revolving-doors-want-a-high-paid-job-at-the-bank-become-a-politician |
Chapter 1 | 19 | Lucas, A. Revealed: The extent of job-swapping between public servants and fossil fuel lobbyists. The Conversation. 5 March 2018. | theconversation.com/revealed-the-extent-of-job-swapping-between-public-servants-and-fossil-fuel-lobbyists-88695 |
Chapter 1 | 20 | Moss, M. Salt Sugar Fat: How the food giants hooked us. Random House, New York, 2014. | www.penguin.com.au/books/salt-sugar-fat-9781448133871 |
Chapter 1 | 21 | Australian Institute of Health and Welfare. (2018). Australia’s Health 2018: Fruit and vegetable intake. AIHW, Australian Government, Canberra. | www.aihw.gov.au/reports/australias-health/australias-health-2018/contents/indicators-of-australias-health/fruit-and-vegetable-intake |
Chapter 1 | 22 | Lustig, R. H. (2020). Ultraprocessed food: Addictive, toxic, and ready for regulation. Nutrients, 12(11), 3401. | www.mdpi.com/2072-6643/12/11/3401 |
Chapter 1 | 23 | Pan American Health Organization. (2015). Ultra-processed food and drink products in Latin America: Trends, impact on obesity, policy implications. Pan American Health Organization (PAHO), Washington, D.C. | iris.paho.org/bitstream/handle/10665.2/7699/9789275118641_eng.pdf |
Chapter 1 | 24 | Espel‐Huynh, H. M., Muratore, A. F. and Lowe, M. R. (2018). A narrative review of the construct of hedonic hunger and its measurement by the Power of Food Scale. Obesity Science and Practice, 4(3), 238–49. | onlinelibrary.wiley.com/doi/abs/10.1002/osp4.161 |
Chapter 1 | 25 | Spence, C. (2015). Eating with our ears: Assessing the importance of the sounds of consumption on our perception and enjoyment of multisensory flavour experiences. Flavour, 4(1), 3. | link.springer.com/article/10.1186/2044-7248-4-3 |
Chapter 1 | 26 | Rao, P., Rodriguez, R. L. and Shoemaker, S. P. (2018). Addressing the sugar, salt, and fat issue the science of food way. NPJ Science of Food, 2, 12. | www.nature.com/articles/s41538-018-0020-x |
Chapter 1 | 27 | Barley, S. Earliest evidence of humans thriving on the savannah. New Scientist. 21 October 2009. | www.newscientist.com/article/dn18018-earliest-evidence-of-humans-thriving-on-the-savannah |
Chapter 1 | 28 | Power, M. L. and Schulkin, J. The Evolution of Obesity. Johns Hopkins University Press, Baltimore, 2013. | jhupbooks.press.jhu.edu/title/evolution-obesity |
Chapter 1 | 29 | Hall, K. D. (2018). Did the food environment cause the obesity epidemic? Obesity, 26(1), 11–13. | onlinelibrary.wiley.com/doi/abs/10.1002/oby.22073 |
Chapter 1 | 30 | Wiss, D. A., Avena, N. and Rada, P. (2018). Sugar addiction: From evolution to revolution. Frontiers in Psychiatry, 9, 545. | www.frontiersin.org/articles/10.3389/fpsyt.2018.00545/full?report=reader |
Chapter 1 | 31 | Schulte, E. M., Avena, N. M. and Gearhardt, A. N. (2015). Which foods may be addictive? The roles of processing, fat content, and glycemic load. PLOS One, 10(2), e0117959. | journals.plos.org/plosone/article?id=10.1371/journal.pone.0117959 |
Chapter 1 | 32 | Gordon, E. L., Ariel-Donges, A. H., Bauman, V. and Merlo, L. J. (2018). What is the evidence for ‘food addiction’? A systematic review. Nutrients, 10(4), 477 | www.mdpi.com/2072-6643/10/4/477 |
Chapter 1 | 33 | Lenoir, M., Serre, F., Cantin, L. and Ahmed, S. H. (2007). Intense sweetness surpasses cocaine reward. PLOS One, 2(8), e698. | journals.plos.org/plosone/article?id=10.1371/journal.pone.0000698 |
Chapter 1 | 34 | Volkow, N. D., Wang, G. J. and Baler, R. D. (2011). Reward, dopamine and the control of food intake: Implications for obesity. Trends in Cognitive Sciences, 15(1), 37–46 | www.sciencedirect.com/science/article/pii/S1364661310002470 |
Chapter 1 | 35 | Machado, P. P. et al. (2019). Ultra-processed foods and recommended intake levels of nutrients linked to non-communicable diseases in Australia: Evidence from a nationally representative cross-sectional study. BMJ Open, 9(8), e029544. | bmjopen.bmj.com/content/9/8/e029544 |
Chapter 1 | 36 | Machado, P. P. et al. (2020). Ultra-processed food consumption and obesity in the Australian adult population. Nutrition & Diabetes, 10(1), 1–11. | www.nature.com/articles/s41387-020-00141-0 |
Chapter 1 | 37 | Fiolet, T. et al. (2018). Consumption of ultra-processed foods and cancer risk: Results from NutriNet-Santé prospective cohort. BMJ, 360, k322. | www.bmj.com/content/360/bmj.k322 |
Chapter 1 | 38 | Srour, B. et al. (2019). Ultra-processed food intake and risk of cardiovascular disease: Prospective cohort study (NutriNet-Santé). BMJ, 365, l1451. | www.bmj.com/content/365/bmj.l1451 |
Chapter 1 | 39 | Rico-Campà, A., Martínez-González, M. A., Alvarez-Alvarez, I., de Deus Mendonça, R., de la Fuente-Arrillaga, C., Gómez-Donoso, C. and Bes-Rastrollo, M. (2019). Association between consumption of ultra-processed foods and all cause mortality: SUN prospective cohort study. BMJ, 365, l1949. | www.bmj.com/content/365/bmj.l1949 |
Chapter 1 | 40 | Mendonça, R. D. D., Lopes, A. C. S., Pimenta, A. M., Gea, A., Martinez-Gonzalez, M. A. and Bes-Rastrollo, M. (2017). Ultra-processed food consumption and the incidence of hypertension in a Mediterranean cohort: The Seguimiento Universidad de Navarra Project. American Journal of Hypertension, 30(4), 358–66. | academic.oup.com/ajh/article-abstract/30/4/358/2645510 |
Chapter 1 | 41 | Aguayo-Patrón, S. V. and Calderón de la Barca, A. M. (2017). Old fashioned vs. ultra-processed-based current diets: Possible implication in the increased susceptibility to type 1 diabetes and celiac disease in childhood. Foods, 6(11), 100. | www.mdpi.com/2304-8158/6/11/100 |
Chapter 1 | 42 | Schnabel, L. et al. (2018). Association between ultra-processed food consumption and functional gastrointestinal disorders: Results from the French NutriNet-Santé cohort. American Journal of Gastroenterology, 113(8), 1217–28. | pubmed.ncbi.nlm.nih.gov/29904158 |
Chapter 1 | 43 | Bonaccio, M. et al. (2020). Ultra-processed food consumption is associated with increased risk of all-cause and cardiovascular mortality in the Moli-sani Study. American Journal of Clinical Nutrition, nqaa299. Advance online publication. | pubmed.ncbi.nlm.nih.gov/33333551 |
Chapter 1 | 44 | Lopes, A. E. D. S. C., Araújo, L. F., Levy, R. B., Barreto, S. M. and Giatti, L. (2019). Association between consumption of ultra-processed foods and serum C-reactive protein levels: cross-sectional results from the ELSA-Brasil study. Sao Paulo Medical Journal, 137(2), 169–76. | www.researchgate.net/publication/334530416_Association_between_consumption_of_ultra-processed_foods_and_serum_C-reactive_protein_levels_cross-sectional_results_from_the_ELSA-Brasil_study |
Chapter 1 | 45 | Wise, J. (2016). Sugar industry paid for dietary research in 1960s, analysis shows. BMJ, 354, i4936. | www.bmj.com/content/354/bmj.i4936 |
Chapter 1 | 46 | Nestle, M. (2016). Corporate funding of food and nutrition research: Science or marketing? JAMA Internal Medicine, 176(1), 13–14. | jamanetwork.com/journals/jamainternalmedicine/article-abstract/2471609 |
Chapter 1 | 47 | Lesser, L. I., Ebbeling, C. B., Goozner, M., Wypij, D. and Ludwig, D. S. (2007). Relationship between funding source and conclusion among nutrition-related scientific articles. PLOS Medicine, 4(1), e5. | journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.0040005 |
Chapter 1 | 48 | Steele, S., Ruskin, G., McKee, M. and Stuckler, D. (2019). ‘Always read the small print’: A case study of commercial research funding, disclosure and agreements with Coca-Cola. Journal of Public Health Policy, 40(3), 273–85. | link.springer.com/article/10.1057/s41271-019-00170-9 |
Chapter 1 | 49 | Kearns, C. E., Schmidt, L. A. and Glantz, S. A. (2016). Sugar industry and coronary heart disease research: A historical analysis of internal industry documents. JAMA Internal Medicine, 176(11), 1680–5. | jamanetwork.com/journals/jamainternalmedicine/article-abstract/2548255 |
Chapter 1 | 50 | Nestle, M. (2016). Food industry funding of nutrition research: The relevance of history for current debates. JAMA Internal Medicine, 176(11), 168–6. | jamanetwork.com/journals/jamainternalmedicine/article-abstract/2548251 |
Chapter 1 | 51 | O’Connor, A. How the sugar industry shifted blame to fat. New York Times. 12 September 2016. | www.nytimes.com/2016/09/13/well/eat/how-the-sugar-industry-shifted-blame-to-fat.html |
Chapter 1 | 52 | O’Connor, A. Coca-Cola funds scientists who shift blame for obesity away from bad diets. Well: New York Times blogs. 9 August 2015. | well.blogs.nytimes.com/2015/08/09/coca-cola-funds-scientists-who-shift-blame-for-obesity-away-from-bad-diets |
Chapter 1 | 53 | Fabbri, A., Holland, T. J. and Bero, L. A. (2018). Food industry sponsorship of academic research: Investigating commercial bias in the research agenda. Public Health Nutrition, 21(18), 3422–30. | www.cambridge.org/core/journals/public-health-nutrition/article/food-industry-sponsorship-of-academic-research-investigating-commercial-bias-in-the-research-agenda/A4D9C0DC429218D5EFDFBE80FAE5E087 |
Chapter 1 | 54 | Lucas, A. New research shows Coke has led efforts by US junk food companies to shape China’s obesity policy. CNBC, 10 January 2019. | www.cnbc.com/2019/01/10/coke-junk-food-companies-have-been-shaping-chinas-obesity-policy.html |
Chapter 1 | 55 | Griffin, S. (2020). Coca-Cola sought to shift blame for obesity by funding public health conferences, study reports. BMJ, 371, m4718. | www.bmj.com/content/371/bmj.m4718 |
Chapter 1 | 56 | Barlow, P., Serôdio, P., Ruskin, G., McKee, M. and Stuckler, D. (2018). Science organisations and Coca-Cola’s ‘war’ with the public health community: Insights from an internal industry document. Journal of Epidemiology and Community Health, 72(9), 761– | jech.bmj.com/content/72/9/761 |
Chapter 1 | 57 | Strom, M. and Hatch, P. What Coca-Cola isn’t telling you about its health funding in Australia. Sydney Morning Herald. 24 February 2016. | www.smh.com.au/business/consumer-affairs/what-cocacola-isnt-telling-you-about-its-health-funding-in-australia-20160218-gmx3l3.html |
Chapter 1 | 58 | Davey, M. Sugar tax: Why health experts want it but politicians and industry are resisting. Guardian Australia. 10 January 2018. | www.theguardian.com/australia-news/2018/jan/10/sugar-tax-why-health-experts-want-it-but-politicians-and-industry-are-resisting |
Chapter 1 | 59 | Grynbaum, M. M. Soda makers begin their push against New York ban. New York Times. 1 July 2012. | www.nytimes.com/2012/07/02/nyregion/in-fight-against-nyc-soda-ban-industry-focuses-on-personal-choice.html |
Chapter 1 | 60 | Clarke, R., Frost, C., Collins, R., Appleby, P. and Peto, R. (1997). Dietary lipids and blood cholesterol: Quantitative meta-analysis of metabolic ward studies. BMJ (Clinical Research Ed.), 314(7074), 112–17. | www.bmj.com/content/314/7074/112 |
Chapter 1 | 61 | Carson, J. A. S. et al. (2020). Dietary cholesterol and cardiovascular risk: A science advisory from the American Heart Association. Circulation, 141(3), e39–e53. | www.ahajournals.org/doi/abs/10.1161/CIR.0000000000000743 |
Chapter 1 | 62 | Arnett, D. K. et al. (2019). 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation, 140(11), e596–e646. | www.ahajournals.org/doi/full/10.1161/CIR.0000000000000678 |
Chapter 1 | 63 | Jacobson, T. A. et al. (2015). National Lipid Association recommendations for patient-centered management of dyslipidemia: Part 2. Journal of Clinical Lipidology, 9(6), S1–122. | www.sciencedirect.com/science/article/pii/S1933287415003803 |
Chapter 1 | 64 | Barnard, N. D., Long, M. B., Ferguson, J. M., Flores, R. and Kahleova, H. (2019). Industry funding and cholesterol research: A systematic review. American Journal of Lifestyle Medicine, 1559827619892198. | journals.sagepub.com/doi/abs/10.1177/1559827619892198 |
Chapter 1 | 65 | Johnston, B. C. et al. (2019). Unprocessed red meat and processed meat consumption: Dietary guideline recommendations from the Nutritional Recommendations (NutriRECS) Consortium. Annals of Internal Medicine, 171(10), 756–64. | www.acpjournals.org/doi/abs/10.7326/M19-1621 |
Chapter 1 | 66 | WHO Team. Cancer: Carcinogenicity of the consumption of red meat and processed meat. WHO Newsroom. 2016. | www.who.int/news-room/q-a-detail/cancer-carcinogenicity-of-the-consumption-of-red-meat-and-processed-meat |
Chapter 1 | 67 | Valli, C. et al. (2019). Health-related values and preferences regarding meat consumption: A mixed-methods systematic review. Annals of Internal Medicine, 171(10), 742–55. | www.acpjournals.org/doi/abs/10.7326/M19-1326 |
Chapter 1 | 68 | Correction: Nutritional Recommendations (NutriRECS) on consumption of red and processed meat. Annals of Internal Medicine. 4 February 2020. | www.acpjournals.org/doi/10.7326/L19-0822 |
Chapter 1 | 69 | Mole, B. Researcher promoting red meat, sugar failed to disclose industry ties – again. Ars Technica. 8 January 2020. | arstechnica.com/science/2020/01/researcher-promoting-red-meat-sugar-failed-to-disclose-industry-ties-again |
Chapter 1 | 70 | Reiley, L. Research group that discounted risks of red meat has ties to program partly backed by beef industry. Washington Post. 24 October 2019. | www.washingtonpost.com/business/2019/10/14/research-group-that-discounted-risks-red-meat-has-ties-program-partly-backed-by-beef-industry |
Chapter 1 | 71 | Erickson, J., Sadeghirad, B., Lytvyn, L., Slavin, J. and Johnston, B. C. (2017). The scientific basis of guideline recommendations on sugar intake: A systematic review. Annals of Internal Medicine, 166(4), 257–67. | www.acpjournals.org/doi/abs/10.7326/m16-2020 |
Chapter 1 | 72 | Parker-Pope, T. and O’Connor, A. Scientist who discredited meat guidelines didn’t report past food industry ties. New York Times. 4 October 2019. | www.nytimes.com/2019/10/04/well/eat/scientist-who-discredited-meat-guidelines-didnt-report-past-food-industry-ties.html |
Chapter 1 | 73 | Steele, S., Ruskin, G. and Stuckler, D. (2020). Pushing partnerships: Corporate influence on research and policy via the International Life Sciences Institute. Public Health Nutrition, 23(11), 2032–40. | www.cambridge.org/core/journals/public-health-nutrition/article/pushing-partnerships-corporate-influence-on-research-and-policy-via-the-international-life-sciences-institute/C42EDA188F5E66983D80C8A44E90AB21 |
Chapter 1 | 74 | The Tobacco Free Initiative, World Health Organization. (2001). The Tobacco Industry and Scientific Groups: ILSI: A Case Study. United Nations, Geneva. | www.who.int/tobacco/media/en/ILSI.pdf |
Chapter 1 | 75 | Healthy Kids Association. Partners and sponsors. Healthy Kids Association. | healthy-kids.com.au/about/get-involved/sponsors-partners |
Chapter 1 | 76 | Dairy Australia. Discover Dairy. | www.dairy.edu.au |
Chapter 1 | 77 | Meat & Livestock Australia. School’s In. MLA – Meat & Livestock Australia. 23 May 2019. | www.mla.com.au/news-and-events/industry-news/schools-in |
Chapter 1 | 78 | Medew, J. Premier Daniel Andrew backs McDonald’s in hospital as part of a ‘balanced offering’. Sydney Morning Herald. 7 January 2015. | www.smh.com.au/healthcare/premier-daniel-andrew-backs-mcdonalds-in-hospital-as-part-of-a-balanced-offering-20150107-12jpbq.html |
Chapter 1 | 79 | Sahud, H. B., Binns, H. J., Meadow, W. L. and Tanz, R. R. (2006). Marketing fast food: Impact of fast food restaurants in children’s hospitals. Pediatrics, 118(6), 2290–7. | pediatrics.aappublications.org/content/118/6/2290.short |
Chapter 1 | 80 | Australian Institute of Health and Welfare. (2020). Overweight & obesity: Overview. AIHW, Australian Government, Canberra. | www.aihw.gov.au/reports-data/behaviours-risk-factors/overweight-obesity/overview |
Chapter 1 | 81 | AFL Partners. Australian Football League (AFL). (accessed 23 November 2020) | www.afl.com.au/about-afl/partners/corporate |
Chapter 1 | 82 | 2019 AFL Season by the TV ratings numbers. Sports Industry AU. 30 September 2019. | www.footyindustry.com/?p=4889 |
Chapter 1 | 83 | Stuckler, D. and Nestle, M. (2012). Big food, food systems, and global health. PLOS Medicine, 9(6), e1001242. | journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1001242 |
Chapter 1 | 84 | Obesity Evidence Hub. (2020). Prevention: Marketing to Children: Australia’s regulation of food marketing. Cancer Council Victoria, Melbourne. | www.obesityevidencehub.org.au/collections/prevention/australias-system-of-regulation |
Chapter 1 | 85 | Ronit, K. and Jensen, J. D. (2014). Obesity and industry self-regulation of food and beverage marketing: A literature review. European Journal of Clinical Nutrition, 68(7), 753–9. | www.nature.com/articles/ejcn201460 |
Chapter 1 | 86 | King, L., Hebden, L., Grunseit, A., Kelly, B. and Chapman, K. (2013). Building the case for independent monitoring of food advertising on Australian television. Public Health Nutrition, 16(12), 2249–54. | www.cambridge.org/core/journals/public-health-nutrition/article/building-the-case-for-independent-monitoring-of-food-advertising-on-australian-television/2D3CD7C61B2B1AECB6532642D58205ED |
Chapter 1 | 87 | Bell, C., Pond, N., Davies, L., Francis, J. L., Campbell, E. and Wiggers, J. (2013). Healthier choices in an Australian health service: A pre-post audit of an intervention to improve the nutritional value of foods and drinks in vending machines and food outlets. BMC Health Services Research, 13, 492. | www.ncbi.nlm.nih.gov/pmc/articles/PMC4222841 |
Chapter 1 | 88 | Tsai, C., Svensen, E., Flood, V. M., Probst, Y., Reilly, K., Corbett, S. and Wu, J. (2018). Healthiness of food and beverages for sale at two public hospitals in New South Wales, Australia. Nutrients, 10(2), 216. | www.ncbi.nlm.nih.gov/pmc/articles/PMC5852792 |
Chapter | Reference Number | Content | URL |
---|---|---|---|
Chapter 2 | 1 | Dixit, S. K. and Sambasivan, M. (2018). A review of the Australian healthcare system: A policy perspective. SAGE Open Medicine. | journals.sagepub.com/doi/abs/10.1177/2050312118769211 |
Chapter 2 | 2 | Crosland, P., Ananthapavan, J., Davison, J., Lambert, M. and Carter, R. (2019). The economic cost of preventable disease in Australia: A systematic review of estimates and methods. Australian and New Zealand Journal of Public Health, 43(5), 484–95. | onlinelibrary.wiley.com/doi/abs/10.1111/1753-6405.12925 |
Chapter 2 | 3 | Australian Institute of Health and Welfare. (2014). Australia’s Health 2014. Australia’s Health series no. 14. Cat. no. AUS 178. AIHW, Australian Government, Canberra. | www.aihw.gov.au/getmedia/6c8ffb4a-a0f6-49f8-9b05-01f2157b822c/8_1-health-prevention.pdf |
Chapter 2 | 4 | Australian Institute of Health and Welfare. (2019). Disease expenditure in Australia. AIHW, Australian Government, Canberra. | www.aihw.gov.au/reports/health-welfare-expenditure/disease-expenditure-australia/contents/overview |
Chapter 2 | 5 | Moodie, R. et al. (2013). Profits and pandemics: Prevention of harmful effects of tobacco, alcohol, and ultra-processed food and drink industries. The Lancet, 381(9867), 670–9. | www.sciencedirect.com/science/article/pii/S0140673612620893 |
Chapter 2 | 6 | Stuckler, D. and Nestle, M. (2012). Big food, food systems, and global health. PLOS Medicine, 9(6), e1001242. | journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1001242 |
Chapter 2 | 7 | Knaus, C. and Evershed, N. Pharmaceutical industry donates millions to both Australian political parties. Guardian Australia. 25 September 2018. | www.theguardian.com/business/2018/sep/25/pharmaceutical-industry-donates-millions-to-both-australian-political-parties |
Chapter 2 | 8 | Mialon, M., Swinburn, B., Allender, S. and Sacks, G. (2016). Systematic examination of publicly-available information reveals the diverse and extensive corporate political activity of the food industry in Australia. BMC Public Health, 16(1), 283. | link.springer.com/article/10.1186/s12889-016-2955-7 |
Chapter 2 | 9 | Knaus, C. More than $100m donated to political parties from hidden sources in election year. Guardian Australia. 11 February 2020. | www.theguardian.com/australia-news/2020/feb/11/more-than-100m-donated-to-political-parties-from-hidden-sources-in-election-year |
Chapter 2 | 10 | Australian Institute of Health and Welfare. (2020). Australia’s Health 2020: In brief. Australia’s Health Series no. 17, Cat. no. AUS 232. AIHW, Australian Government, Canberra. | www.aihw.gov.au/getmedia/2aa9f51b-dbd6-4d56-8dd4-06a10ba7cae8/aihw-aus-232.pdf.aspx |
Chapter 2 | 11 | Meat & Livestock Australia. Export values hit new highs. MLA – Meat & Livestock Australia. 27 June 2019. | www.mla.com.au/prices-markets/market-news/export-values-hit-new-highs |
Chapter 2 | 12 | Bless, A. Does Australia need a tax on red meat? Sydney Environment Institute. 17 December 2018. | sei.sydney.edu.au/opinion/australia-need-tax-red-meat |
Chapter 2 | 13 | Wutzke, S., Morrice, E., Benton, M., Milat, A., Russell, L. and Wilson, A. (2018). Australia’s national partnership agreement on preventive health: Critical reflections from states and territories. Health Promotion Journal of Australia, 29(3), 228–35. | www.ncbi.nlm.nih.gov/pmc/articles/PMC6635816 |
Chapter 2 | 14 | Huang, T., Yang, B., Zheng, J., Li, G., Wahlqvist, M. L. and Li, D. (2012). Cardiovascular disease mortality and cancer incidence in vegetarians: A meta-analysis and systematic review. Annals Of Nutrition and Metabolism, 60(4), 233–40. | pubmed.ncbi.nlm.nih.gov/22677895 |
Chapter 2 | 15 | Key, T. J. et al. (1998). Mortality in vegetarians and non-vegetarians: A collaborative analysis of 8300 deaths among 76,000 men and women in five prospective studies. Public Health Nutrition, 1(1), 33–41. | pubmed.ncbi.nlm.nih.gov/10555529 |
Chapter 2 | 16 | Pimentel, D. and Pimentel, M. (2003). Sustainability of meat-based and plant-based diets and the environment. American Journal of Clinical Nutrition, 78(3), 660S–3S. | academic.oup.com/ajcn/article/78/3/660S/4690010 |
Chapter 2 | 17 | Kestin, M., Rouse, I. L., Correll, R. A. and Nestel, P. J. (1989). Cardiovascular disease risk factors in free-living men: Comparison of two prudent diets, one based on lactoovovegetarianism and the other allowing lean meat. American Journal of Clinical Nutrition, 50(2), 280–7. | academic.oup.com/ajcn/article-abstract/50/2/280/4650993 |
Chapter 2 | 18 | Sofi, F., Abbate, R., Gensini, G. F. and Casini, A. (2010). Accruing evidence on benefits of adherence to the Mediterranean diet on health: An updated systematic review and meta-analysis. American Journal of Clinical Nutrition, 92(5), 1189–96. | pubmed.ncbi.nlm.nih.gov/20810976 |
Chapter 2 | 19 | de Lorgeril, M. et al. (1994). Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease. The Lancet, 343(8911), 1454–9. | pubmed.ncbi.nlm.nih.gov/7911176 |
Chapter 2 | 20 | Stehfest, E., Bouwman, L., Van Vuuren, D. P., Den Elzen, M. G., Eickhout, B. and Kabat, P. (2009). Climate benefits of changing diet. Climatic Change, 95(1), 83–102. | link.springer.com/article/10.1007/s10584-008-9534-6 |
Chapter 2 | 21 | Kendall, C. W. and Jenkins, D. J. (2004). A dietary portfolio: Maximal reduction of low-density lipoprotein cholesterol with diet. Current Atherosclerosis Reports, 6(6), 492–8. | link.springer.com/article/10.1007/s11883-004-0091-9 |
Chapter 2 | 22 | Reynolds, A., Mann, J., Cummings, J., Winter, N., Mete, E. and Te Morenga, L. (2019). Carbohydrate quality and human health: A series of systematic reviews and meta-analyses. The Lancet, 393(10170), 434–45. | www.sciencedirect.com/science/article/pii/S0140673618318099 |
Chapter 2 | 23 | Hall, K. D. et al. (2019). Ultra-processed diets cause excess calorie intake and weight gain: An inpatient randomized controlled trial of ad libitum food intake. Cell Metabolism, 30(1), 67–77. | www.sciencedirect.com/science/article/pii/S1550413119302487 |
Chapter 2 | 24 | Food and Agriculture Organization of the United Nations. (2014). Food based dietary guidelines – Brazil. FAO, Rome. | www.fao.org/nutrition/education/food-dietary-guidelines/regions/brazil/en |
Chapter 2 | 25 | Health Canada. (2018). Canada’s Dietary Guidelines: For health professionals and policy makers. Government of Canada, Ottawa. | food-guide.canada.ca/sites/default/files/artifact-pdf/CDG-EN-2018.pdf |
Chapter 2 | 26 | AusTender. (2009). Contract Notice View - CN162381. AusTender, Australian Government, Canberra. | www.tenders.gov.au/Cn/Show/C49E341D-0E68-B1E0-066C-17BECC45EE0C |
Chapter 2 | 27 | About Us. Dietitians Australia. (accessed 23 November 2020) | dietitiansaustralia.org.au/about-daa |
Chapter 2 | 28 | Simon, M. And now a word from our sponsors: Australian edition: Is the Dietitians Association of Australia in the pocket of Big Food? Eat Drink Politics. February 2015. | www.eatdrinkpolitics.com/wp-content/uploads/DAAReportEatDrinkPolitics.pdf |
Chapter 2 | 29 | Kris-Etherton, P. M. et al. (2014). The need to advance nutrition education in the training of health care professionals and recommended research to evaluate implementation and effectiveness. American Journal of Clinical Nutrition, 99(5), 1153S–1166S. | academic.oup.com/ajcn/article-abstract/99/5/1153S/4577451 |
Chapter 2 | 30 | Parker, W. A., Steyn, N. P., Levitt, N. S. and Lombard, C. J. (2011). They think they know but do they? Misalignment of perceptions of lifestyle modification knowledge among health professionals. Public Health Nutrition, 14(8), 1429–38. | www.cambridge.org/core/journals/public-health-nutrition/article/they-think-they-know-but-do-they-misalignment-of-perceptions-of-lifestyle-modification-knowledge-among-health-professionals/72F584BCCEEC1EEAD54E04978236B127 |
Chapter 2 | 31 | Adams, K. M., Lindell, K. C., Kohlmeier, M. and Zeisel, S. H. (2006). Status of nutrition education in medical schools. American Journal of Clinical Nutrition, 83(4), 941S–944S. | academic.oup.com/ajcn/article-abstract/83/4/941S/4649273 |
Chapter 2 | 32 | Lenders, C. et al. (2013). A novel nutrition medicine education model: The Boston University experience. Advances in Nutrition, 4(1), 1–7. | academic.oup.com/advances/article-abstract/4/1/1/4591555 |
Chapter 2 | 33 | Crowley, J., Ball, L., Laur, C., Wall, C., Arroll, B., Poole, P. and Ray, S. (2015). Nutrition guidelines for undergraduate medical curricula: A six-country comparison. Advances in Medical Education and Practice, 6, 127. | www.ncbi.nlm.nih.gov/pmc/articles/PMC4337413/ |
Chapter 2 | 34 | Morris, N. P. (2014). The neglect of nutrition in medical education: A firsthand look. JAMA Internal Medicine, 174(6), 841–2. | jamanetwork.com/journals/jamainternalmedicine/article-abstract/1860501 |
Chapter 2 | 35 | Medical Board of Australia. (2018). List of specialties, fields of specialty practice and related specialist titles. Australian Health Practitioner Regulation Agency (Ahpra), Melbourne. | www.medicalboard.gov.au/registration/types/specialist-registration/medical-specialties-and-specialty-fields.aspx |
Chapter 2 | 36 | Schoendorfer, N. and Schafer, J. (2015). Enabling valuation of nutrition integration into MBBS program. Journal of Biomedical Education, 2015. | www.hindawi.com/journals/jbe/2015/760104/abs |
Chapter 2 | 37 | Crowley, J., Ball, L. and Hiddink, G. J. (2019). Nutrition in medical education: A systematic review. The Lancet Planetary Health, 3(9), e379–e389. | www.sciencedirect.com/science/article/pii/S2542519619301718 |
Chapter 2 | 38 | Mogre, V., Stevens, F. C., Aryee, P. A., Amalba, A. and Scherpbier, A. J. (2018). Why nutrition education is inadequate in the medical curriculum: A qualitative study of students’ perspectives on barriers and strategies. BMC Medical Education, 18(1), 26. | link.springer.com/article/10.1186/s12909-018-1130-5 |
Chapter 2 | 39 | Warner, K. E. (2014). 50 years since the first Surgeon General’s report on smoking and health: A happy anniversary? American Journal of Public Health, 104(1), 5–8. | ajph.aphapublications.org/doi/full/10.2105/AJPH.2013.301722 |
Chapter 2 | 40 | Warner K. E. (2002). What’s a cigarette company to do? American Journal of Public Health, 92(6), 897–900. | www.ncbi.nlm.nih.gov/pmc/articles/PMC1447479 |
Chapter 2 | 41 | Doll, R. and Hill, A. B. (1954). The mortality of doctors in relation to their smoking habits: A preliminary report. BMJ, 1(4877), 1451–5. | www.ncbi.nlm.nih.gov/pmc/articles/PMC2085438 |
Chapter 2 | 42 | Branca, F. et al. (2019). Transforming the food system to fight non-communicable diseases. BMJ, 364, l296. | www.bmj.com/content/364/bmj.l296 |
Chapter 2 | 43 | Harmon, B. E. et al. (2015). Associations of key diet-quality indexes with mortality in the Multiethnic Cohort: The Dietary Patterns Methods Project. American Journal of Clinical Nutrition, 101(3), 587–97. | academic.oup.com/ajcn/article-abstract/101/3/587/4569413 |
Chapter 2 | 44 | Liese, A. D. et al. (2015). The Dietary Patterns Methods Project: Synthesis of findings across cohorts and relevance to dietary guidance. Journal of Nutrition, 145(3), 393–402. | academic.oup.com/jn/article-abstract/145/3/393/4743665 |
Chapter 2 | 45 | Reedy, J., Krebs-Smith, S. M., Miller, P. E., Liese, A. D., Kahle, L. L., Park, Y. and Subar, A. F. (2014). Higher diet quality is associated with decreased risk of all-cause, cardiovascular disease, and cancer mortality among older adults. Journal of Nutrition, 144(6), 881–9. | academic.oup.com/jn/article-abstract/144/6/881/4615977 |
Chapter 2 | 46 | Fabbri, A., Grundy, Q., Mintzes, B., Swandari, S., Moynihan, R., Walkom, E. and Bero, L. A. (2017). A cross-sectional analysis of pharmaceutical industry-funded events for health professionals in Australia. BMJ Open, 7(6), e016701. | bmjopen.bmj.com/content/7/6/e016701 |
Chapter 2 | 47 | Han, E. Alarm over drug companies’ extravagant spending and influence on doctors. Sydney Morning Herald. 10 January 2018. | www.smh.com.au/healthcare/alarm-over-drug-companies-extravagant-spending-and-influence-on-doctors-20180110-h0g692.html |
Chapter 2 | 48 | DeJong, C., Aguilar, T., Tseng, C. W., Lin, G. A., Boscardin, W. J. and Dudley, R. A. (2016). Pharmaceutical industry–sponsored meals and physician prescribing patterns for Medicare beneficiaries. JAMA Internal Medicine, 176(8), 1114–22. | jamanetwork.com/journals/jamainternalmedicine/fullarticle/2528290/ |
Chapter 2 | 49 | Gagne, J. J. et al. (2014). Comparative effectiveness of generic and brand-name statins on patient outcomes: A cohort study. Annals of Internal Medicine, 161(6), 400–7. | www.acpjournals.org/doi/abs/10.7326/M13-2942 |
Chapter 2 | 50 | Australian Pharmaceutical Market to Surpass $25 Billion. Drug Development & Delivery. [No date]. | drug-dev.com/australian-pharmaceutical-market-to-surpass-25-billion |
Chapter 2 | 51 | Cancer Australia. (2019). Cancer Mortality. National Cancer Control Indicators, Cancer Australia, Australian Government, Canberra. | ncci.canceraustralia.gov.au/outcomes/cancer-mortality/cancer-mortality |
Chapter 2 | 52 | Onagan, F. C. C., Ho, B. L. C. and Chua, K. K. T. (2019). Development of a sweetened beverage tax, Philippines. Bulletin of the World Health Organization, 97, 154–9. | www.ncbi.nlm.nih.gov/pmc/articles/PMC6357562 |
Chapter 2 | 53 | Blake, M. R. et al. (2018). Retailer-led sugar-sweetened beverage price increase reduces purchases in a hospital convenience store in Melbourne, Australia: A mixed methods evaluation. Journal of the Academy of Nutrition and Dietetics, 118(6), 1027–36. | www.sciencedirect.com/science/article/pii/S2212267217310055 |
Chapter 2 | 54 | Mikkelson, D. Thomas Edison on the ‘Doctor of the Future’. Snopes. 25 January 2015. | www.snopes.com/fact-check/the-doctor-of-the-future |
Chapter | Reference Number | Content | URL |
---|---|---|---|
Chapter 3 | 1 | Australian Institute of Health and Welfare. (2018). Nutrition across the life stages. Cat. no. PHE 227. AIHW, Australian Government, Canberra. | www.aihw.gov.au/getmedia/fc5ad42e-08f5-4f9a-9ca4-723cacaa510d/aihw-phe-227.pdf |
Chapter 3 | 2 | Mozaffarian, D., Rosenberg, I. and Uauy, R. (2018). History of modern nutrition science – Implications for current research, dietary guidelines, and food policy. BMJ, 361, k2392. | www.bmj.com/content/361/bmj.k2392 |
Chapter 3 | 3 | Lai, J. C. Australasian health star rating system could be much improved. Otago Daily Times. 10 July 2019. | www.odt.co.nz/lifestyle/food-wine/news-features/australasian-health-star-rating-system-could-be-much-improved |
Chapter 3 | 4 | Dickie, S., Woods, J. L. and Lawrence, M. (2018). Analysing the use of the Australian Health Star Rating system by level of food processing. International Journal of Behavioral Nutrition and Physical Activity, 15(1), 1–9. | ijbnpa.biomedcentral.com/articles/10.1186/s12966-018-0760-7 |
Chapter 3 | 5 | Machado, P. P. et al. (2019). Ultra-processed foods and recommended intake levels of nutrients linked to non-communicable diseases in Australia: Evidence from a nationally representative cross-sectional study. BMJ Open, 9(8), e029544. | bmjopen.bmj.com/content/9/8/e029544 |
Chapter 3 | 6 | National Health and Medical Research Council. (2013). Australian Dietary Guidelines Summary. National Health and Medical Research Council, Canberra. | www.eatforhealth.gov.au/sites/default/files/content/The%20Guidelines/n55a_australian_dietary_guidelines_summary_131014_1.pdf |
Chapter 3 | 7 | Obesity Policy Coalition. (2018). Policy brief: Improving the effectiveness of the Health Star Rating system. Obesity Policy Coalition, Melbourne. | www.opc.org.au/downloads/policy-briefs/improving-the-effectiveness-of-the-health-star-rating-system.pdf |
Chapter 3 | 8 | Longmire, M. Nutri-Grain and Milo Cereal lose Health Stars under proposed changes. Choice. 1 July 2019. | www.choice.com.au/food-and-drink/nutrition/food-labelling/articles/health-star-ratings-proposed-added-sugar-penalty |
Chapter 3 | 9 | Jones, A., Shahid, M. and Neal, B. (2018). Uptake of Australia’s Health Star Rating System. Nutrients, 10(8), 997. | www.mdpi.com/2072-6643/10/8/997 |
Chapter 3 | 10 | Zeviani, R. Are we really getting value from our promotions? Nielsen Insights. 3 August 2018. | www.nielsen.com/au/en/insights/article/2018/are-we-really-getting-value-from-our-promotions |
Chapter 3 | 11 | Riesenberg, D. et al. (2019). Price promotions by food category and product healthiness in an Australian supermarket chain, 2017–2018. American Journal of Public Health, 109(10), 1434–9. | ajph.aphapublications.org/doi/abs/10.2105/AJPH.2019.305229 |
Chapter 3 | 12 | Ladher, N. (2016). Nutrition science in the media: You are what you read. BMJ, 353, i1879. | www.bmj.com/content/353/bmj.i1879 |
Chapter 3 | 13 | Grand View Research. (2020). Gluten-free products market size, share & trends analysis report by product (bakery products, dairy/dairy alternatives), by distribution channel (grocery stores, mass merchandiser), by region, and segment forecasts, 2020–2027. Grand View Research, San Francisco. | www.grandviewresearch.com/industry-analysis/gluten-free-products-market |
Chapter 3 | 14 | Reynolds, A., Mann, J., Cummings, J., Winter, N., Mete, E. and Te Morenga, L. (2019). Carbohydrate quality and human health: A series of systematic reviews and meta-analyses. The Lancet, 393(10170), 434–45. | www.sciencedirect.com/science/article/pii/S0140673618318099 |
Chapter 3 | 15 | Lebwohl, B. et al. (2017). Long term gluten consumption in adults without celiac disease and risk of coronary heart disease: Prospective cohort study. BMJ, 357, j1892. | www.bmj.com/content/357/bmj.j1892 |
Chapter 3 | 16 | American Heart Association News. Drinking red wine for heart health? Read this before you toast. American Heart Association. 24 May 2019. | www.heart.org/en/news/2019/05/24/drinking-red-wine-for-heart-health-read-this-before-you-toast |
Chapter 3 | 17 | American Heart Association News. Are there health benefits from chocolate? American Heart Association. 12 February 2019. | www.heart.org/en/news/2019/02/12/are-there-health-benefits-from-chocolate |
Chapter 3 | 18 | Belluz, J. Dark chocolate is now a health food. Here’s how that happened. Vox. 20 August 2018. | www.vox.com/science-and-health/2017/10/18/15995478/chocolate-health-benefits-heart-disease |
Chapter 3 | 19 | Buettner, D. and Skemp, S. (2016). Blue Zones: Lessons from the world’s longest lived. American Journal of Lifestyle Medicine, 10(5), 318–21. | journals.sagepub.com/doi/abs/10.1177/1559827616637066 |
Chapter 3 | 20 | Willcox, D. C., Scapagnini, G. and Willcox, B. J. (2014). Healthy aging diets other than the Mediterranean: A focus on the Okinawan diet. Mechanisms of Ageing and Development, 136, 148–62. | www.sciencedirect.com/science/article/pii/S0047637414000037 |
Chapter 3 | 21 | Orlich, M. J. et al. (2013). Vegetarian dietary patterns and mortality in Adventist Health Study 2. JAMA Internal Medicine, 173(13), 1230–8. | jamanetwork.com/journals/jamainternalmedicine/article-abstract/1710093 |
Chapter 3 | 22 | Harvard Women’s Health Watch. What’s the scoop on bone soup? Harvard Health Publishing. September 2015. | www.health.harvard.edu/healthy-eating/whats-the-scoop-on-bone-soup |
Chapter 3 | 23 | Clement, J. Global time spent on social media daily 2018. Statista. January 2020. | www.statista.com/statistics/433871/daily-social-media-usage-worldwide |
Chapter 3 | 24 | Mischel, W., Ebbesen, E. B. and Raskoff Zeiss, A. (1972). Cognitive and attentional mechanisms in delay of gratification. Journal of Personality and Social Psychology, 21(2), 204. | psycnet.apa.org/record/1972-20631-001 |
Chapter 3 | 25 | Casey, B. J. et al. (2011). Behavioral and neural correlates of delay of gratification 40 years later. Proceedings of the National Academy of Sciences, 108(36), 14998–15003. | www.pnas.org/content/108/36/14998 |
Chapter 3 | 26 | Mischel, W., Shoda, Y. and Peake, P. K. (1988). The nature of adolescent competencies predicted by preschool delay of gratification. Journal of Personality and Social Psychology, 54(4), 687. | psycnet.apa.org/record/1988-19783-001 |
Chapter 3 | 27 | Shoda, Y., Mischel, W. and Peake, P. K. (1990). Predicting adolescent cognitive and self-regulatory competencies from preschool delay of gratification: Identifying diagnostic conditions. Developmental Psychology, 26(6), 978. | psycnet.apa.org/journals/dev/26/6/978.html |
Chapter 3 | 28 | Kidd, C., Palmeri, H. and Aslin, R. N. (2013). Rational snacking: Young children’s decision-making on the marshmallow task is moderated by beliefs about environmental reliability. Cognition, 126(1), 109–14. | www.sciencedirect.com/science/article/pii/S0010027712001849 |
Chapter | Reference Number | Content | URL |
---|---|---|---|
Chapter 4 | 1 | Lucas, R. M. and Rodney Harris, R. M. (2018). On the nature of evidence and ‘proving’ causality: Smoking and lung cancer vs. sun exposure, vitamin D and multiple sclerosis. International Journal of Environmental Research and Public Health, 15(8), 1726. | www.mdpi.com/1660-4601/15/8/1726 |
Chapter 4 | 2 | Health Canada. (2018). Canada’s Dietary Guidelines: For health professionals and policy makers. Government of Canada, Ottawa. | food-guide.canada.ca/sites/default/files/artifact-pdf/CDG-EN-2018.pdf |
Chapter 4 | 3 | Grant, J. D. and Jenkins, D. J. (2018). Resisting influence from agri-food industries on Canada’s new food guide. Canadian Medical Association Journal, 190(15), E451–2. | www.researchgate.net/publication/324541540_Resisting_influence_from_agri-food_industries_on_Canada%27s_new_food_guide |
Chapter 4 | 4 | Is milk healthy? Canada’s new food guide says not necessarily. BBC News. 22 January 2019. | www.bbc.com/news/world-us-canada-46964549 |
Chapter 4 | 5 | Health Canada. (2020). Eat protein foods. Canada’s Food Guide, Government of Canada, Ottawa. | food-guide.canada.ca/en/healthy-eating-recommendations/make-it-a-habit-to-eat-vegetables-fruit-whole-grains-and-protein-foods/eat-protein-foods |
Chapter 4 | 1 | Aune, D. et al. (2016). BMI and all cause mortality: Systematic review and non-linear dose-response meta-analysis of 230 cohort studies with 3.74 million deaths among 30.3 million participants. BMJ, 353, i2156. | www.bmj.com/content/353/bmj.i2156 |
Chapter 4 | 2 | Fernandes, J. C. and GBD 2015 Obesity Collaborators. (2017). Health effects of overweight and obesity in 195 countries over 25 years. New England Journal of Medicine, 77(1), 13–27. | www.nejm.org/doi/full/10.1056/NEJMoa1614362 |
Chapter 4 | 3 | Zheng, Y. et al. (2017). Associations of weight gain from early to middle adulthood with major health outcomes later in life. JAMA, 318(3), 255–69. | jamanetwork.com/journals/jama/article-abstract/2643761 |
Chapter 4 | 4 | Kramer, C. K., Zinman, B. and Retnakaran, R. (2013). Are metabolically healthy overweight and obesity benign conditions? A systematic review and meta-analysis. Annals of Internal Medicine, 159(11), 758–69. | www.acpjournals.org/doi/abs/10.7326/0003-4819-159-11-201312030-00008 |
Chapter 4 | 5 | Sedlmeier, A. M. et al. (2021). Relation of body fat mass and fat-free mass to total mortality: Results from 7 prospective cohort studies. American Journal of Clinical Nutrition, 113(3), 639–46. | academic.oup.com/ajcn/advance-article-abstract/doi/10.1093/ajcn/nqaa339/6092216 |
Chapter 4 | 6 | Abdullah, A., Peeters, A., de Courten, M. and Stoelwinder, J. (2010). The magnitude of association between overweight and obesity and the risk of diabetes: A meta-analysis of prospective cohort studies. Diabetes Research and Clinical Practice, 89(3), 309–19. | pubmed.ncbi.nlm.nih.gov/20493574 |
Chapter 4 | 7 | Aune, D., Norat, T. and Vatten, L. J. (2015). Body mass index, abdominal fatness and the risk of gallbladder disease. European Journal of Epidemiology, 30(9), 1009–19. | pubmed.ncbi.nlm.nih.gov/26374741 |
Chapter 4 | 8 | Aune, D. et al. (2015). Anthropometric factors and endometrial cancer risk: A systematic review and dose-response meta-analysis of prospective studies. Annals of Oncology, 26(8), 1635–48. | www.annalsofoncology.org/article/S0923-7534(19)31836-8 |
Chapter 4 | 9 | Field, A. E., Coakley, E. H., Must, A., Spadano, J. L., Laird, N., Dietz, W. H., Rimm, E. and Colditz, G. A. (2001). Impact of overweight on the risk of developing common chronic diseases during a 10-year period. Archives of Internal Medicine, 161(13), 1581–6. | pubmed.ncbi.nlm.nih.gov/11434789 |
Chapter 4 | 10 | Anstey, K. J., Cherbuin, N., Budge, M. and Young, J. (2011). Body mass index in midlife and late‐life as a risk factor for dementia: A meta‐analysis of prospective studies. Obesity Reviews, 12(5), e426–37. | onlinelibrary.wiley.com/doi/full/10.1111/j.1467-789X.2010.00825 |
Chapter 4 | 11 | Khan, S. S. et al. (2018). Association of body mass index with lifetime risk of cardiovascular disease and compression of morbidity. JAMA Cardiology, 3(4), 280–7. | www.ncbi.nlm.nih.gov/pmc/articles/PMC5875319 |
Chapter 4 | 12 | Adams, K. F. et al. (2006). Overweight, obesity, and mortality in a large prospective cohort of persons 50 to 71 years old. New England Journal of Medicine, 355(8), 763–78. | pubmed.ncbi.nlm.nih.gov/16926275 |
Chapter 4 | 13 | Di Angelantonio, E. et al. (2016). Body-mass index and all-cause mortality: Individual-participant-data meta-analysis of 239 prospective studies in four continents. The Lancet, 388(10046), 776–86. | pubmed.ncbi.nlm.nih.gov/27423262 |
Chapter 4 | 14 | Mann, T., Tomiyama, A. J., Westling, E., Lew, A. M., Samuels, B. and Chatman, J. (2007). Medicare’s search for effective obesity treatments: Diets are not the answer. American Psychologist, 62(3), 220. | psycnet.apa.org/doiLanding?doi=10.1037/0003-066X.62.3.220 |
Chapter 4 | 15 | Wing, R. R. and Phelan, S. (2005). Long-term weight loss maintenance. American Journal of Clinical Nutrition, 82(1), 222S–5S. | academic.oup.com/ajcn/article-abstract/82/1/222S/4863393 |
Chapter 4 | 16 | Barry, V. W., Baruth, M., Beets, M. W., Durstine, J. L., Liu, J. and Blair, S. N. (2014). Fitness vs. fatness on all-cause mortality: A meta-analysis. Progress in Cardiovascular Diseases, 56(4), 382–90. | www.sciencedirect.com/science/article/pii/S0033062013001552 |
Chapter 4 | 17 | Harvard Heart Letter. Calories burned in 30 minutes for people of three different weights. Harvard Health Publishing. 13 August 2018. | www.health.harvard.edu/diet-and-weight-loss/calories-burned-in-30-minutes-of-leisure-and-routine-activities |
Chapter 4 | 18 | Park, M. Twinkie diet helps nutrition professor lose 27 pounds. CNN. 8 November 2010. | edition.cnn.com/2010/HEALTH/11/08/twinkie.diet.professor/index.html |
Chapter 4 | 19 | World Health Organization Regional Office for Europe. Body mass index – BMI. WHO/Europe. | www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi |
Chapter 4 | 20 | Better Health Channel. (2019). Body mass index (BMI). Department of Health & Human Services, State Government of Victoria. | www.betterhealth.vic.gov.au/health/healthyliving/body-mass-index-bmi |
Chapter 4 | 21 | Tolhurst, G. et al. (2012). Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein–coupled receptor FFAR2. Diabetes, 61(2), 364–71. | diabetes.diabetesjournals.org/content/61/2/364 |
Chapter 4 | 22 | Najjar, R. S. and Feresin, R. G. (2019). Plant-based diets in the reduction of body fat: Physiological effects and biochemical insights. Nutrients, 11(11), 2712. | www.mdpi.com/2072-6643/11/11/2712 |
Chapter 4 | 23 | Larraufie, P., Martin-Gallausiaux, C., Lapaque, N., Dore, J., Gribble, F. M., Reimann, F. and Blottiere, H. M. (2018). SCFAs strongly stimulate PYY production in human enteroendocrine cells. Scientific Reports, 8(1), 1–9. | www.nature.com/articles/s41598-017-18259-0 |
Chapter 4 | 24 | Al‐Lahham, S. A. H. et al. (2010). Regulation of adipokine production in human adipose tissue by propionic acid. European Journal of Clinical Investigation, 40(5), 401–7. | onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2362.2010.02278.x |
Chapter 4 | 25 | Nilsson, A., Johansson, E., Ekström, L. and Björck, I. (2013). Effects of a brown beans evening meal on metabolic risk markers and appetite regulating hormones at a subsequent standardized breakfast: A randomized cross-over study. PLOS One, 8(4), e59985. | journals.plos.org/plosone/article?id=10.1371/journal.pone.0059985 |
Chapter 4 | 26 | Hall, K. D. et al. (2019). Ultra-processed diets cause excess calorie intake and weight gain: An inpatient randomized controlled trial of ad libitum food intake. Cell Metabolism, 30(1), 67–77. | www.sciencedirect.com/science/article/pii/S1550413119302487 |
Chapter 4 | 27 | Polsky, J. Y., Moubarac, J-C. and Garriguet, D. (2020). Consumption of ultra-processed foods in Canada. Health Reports, 31(11), 3–15. | www150.statcan.gc.ca/n1/pub/82-003-x/2020011/article/00001-eng.htm |
Chapter 4 | 28 | Rauber, F., da Costa Louzada, M. L., Steele, E. M., Millett, C., Monteiro, C. A. and Levy, R. B. (2018). Ultra-processed food consumption and chronic non-communicable diseases-related dietary nutrient profile in the UK (2008–2014). Nutrients, 10(5), 587. | www.mdpi.com/2072-6643/10/5/587 |
Chapter 4 | 29 | Steele, E. M., Baraldi, L. G., da Costa Louzada, M. L., Moubarac, J. C., Mozaffarian, D. and Monteiro, C. A. (2016). Ultra-processed foods and added sugars in the US diet: Evidence from a nationally representative cross-sectional study. BMJ Open, 6(3), e009892. | bmjopen.bmj.com/content/6/3/e009892 |
Chapter 4 | 30 | Machado, P. P. et al. (2019). Ultra-processed foods and recommended intake levels of nutrients linked to non-communicable diseases in Australia: Evidence from a nationally representative cross-sectional study. BMJ Open, 9(8), e029544. | bmjopen.bmj.com/content/9/8/e029544 |
Chapter 4 | 31 | Key, T. J. et al. (1999). Mortality in vegetarians and nonvegetarians: Detailed findings from a collaborative analysis of 5 prospective studies. American Journal of Clinical Nutrition, 70(3), 516s–24s. | academic.oup.com/ajcn/article-abstract/70/3/516s/4714974 |
Chapter 4 | 32 | Tonstad, S., Butler, T., Yan, R. and Fraser, G. E. (2009). Type of vegetarian diet, body weight, and prevalence of type 2 diabetes. Diabetes Care, 32(5), 791–6. | care.diabetesjournals.org/content/32/5/791 |
Chapter 4 | 33 | Davey, G. K., Spencer, E. A., Appleby, P. N., Allen, N. E., Knox, K. H. and Key, T. J. (2003). EPIC–Oxford: Lifestyle characteristics and nutrient intakes in a cohort of 33 883 meat-eaters and 31 546 non meat-eaters in the UK. Public Health Nutrition, 6(3), 259–68. | www.ncbi.nlm.nih.gov/pubmed/12740075 |
Chapter 4 | 34 | Chang-Claude, J., Hermann, S., Eilber, U. and Steindorf, K. (2005). Lifestyle determinants and mortality in German vegetarians and health-conscious persons: Results of a 21-year follow-up. Cancer Epidemiology and Prevention Biomarkers, 14(4), 963–8. | cebp.aacrjournals.org/content/14/4/963 |
Chapter 4 | 35 | Alewaeters, K., Clarys, P., Hebbelinck, M., Deriemaeker, P. and Clarys, J. P. (2005). Cross-sectional analysis of BMI and some lifestyle variables in Flemish vegetarians compared with non-vegetarians. Ergonomics, 48(11–14), 1433–44. | www.tandfonline.com/doi/abs/10.1080/00140130500101031 |
Chapter 4 | 36 | Singh, P. N. et al. (2019). Plant-based diets are associated with lower adiposity levels among Hispanic/Latino adults in the Adventist Multi-ethnic Nutrition (AMEN) Study. Frontiers in Nutrition, 6, 34. | www.frontiersin.org/articles/10.3389/fnut.2019.00034 |
Chapter 4 | 37 | Matsumoto, S., Beeson, W. L., Shavlik, D. J., Siapco, G., Jaceldo-Siegl, K., Fraser, G. and Knutsen, S. F. (2019). Association between vegetarian diets and cardiovascular risk factors in non-Hispanic white participants of the Adventist Health Study-2. Journal of Nutritional Science, 8, E6. | www.cambridge.org/core/journals/journal-of-nutritional-science/article/association-between-vegetarian-diets-and-cardiovascular-risk-factors-in-nonhispanic-white-participants-of-the-adventist-health-study2/D67DF4359BD4354447B5CF1DE91DB662 |
Chapter 4 | 38 | Chiu, Y. F. et al. (2015). Cross-sectional and longitudinal comparisons of metabolic profiles between vegetarian and non-vegetarian subjects: A matched cohort study. British Journal of Nutrition, 114(8), 1313–20. | www.cambridge.org/core/journals/british-journal-of-nutrition/article/crosssectional-and-longitudinal-comparisons-of-metabolic-profiles-between-vegetarian-and-nonvegetarian-subjects-a-matched-cohort-study/2905C5A7D1CAD779D8D33196A4641CEF |
Chapter 4 | 39 | Huang, R. Y., Huang, C. C., Hu, F. B. and Chavarro, J. E. (2016). Vegetarian diets and weight reduction: A meta-analysis of randomized controlled trials. Journal of General Internal Medicine, 31(1), 109–16. | link.springer.com/article/10.1007/s11606-015-3390-7 |
Chapter 4 | 40 | Ello-Martin, J. A., Roe, L. S., Ledikwe, J. H., Beach, A. M. and Rolls, B. J. (2007). Dietary energy density in the treatment of obesity: A year-long trial comparing 2 weight-loss diets. American Journal of Clinical Nutrition, 85(6), 1465–77. | academic.oup.com/ajcn/article-abstract/85/6/1465/4633000 |
Chapter 4 | 41 | US Department of Agriculture and US Department of Health and Human Services. (1980). Nutrition and your health: Dietary guidelines for Americans. Office of Disease Prevention and Health Promotion, US Department of Health and Human Services. | health.gov/sites/default/files/2019-10/1980thin.pdf |
Chapter 4 | 42 | Jahns, L., Davis-Shaw, W., Lichtenstein, A. H., Murphy, S. P., Conrad, Z. and Nielsen, F. (2018). The history and future of dietary guidance in America. Advances in Nutrition, 9(2), 136–47. | www.ncbi.nlm.nih.gov/pmc/articles/PMC5916427 |
Chapter 4 | 43 | Economic Research Service, United States Department of Agriculture. Food Availability (Per Capita) Data System. Department of Agriculture, US Government, Washington, D.C. | www.ers.usda.gov/data-products/food-availability-per-capita-data-system |
Chapter 4 | 44 | Ford, E. S. and Dietz, W. H. (2013). Trends in energy intake among adults in the United States: Findings from NHANES. American Journal of Clinical Nutrition, 97(4), 848–53. | academic.oup.com/ajcn/article-abstract/97/4/848/4577110 |
Chapter 4 | 45 | Briefel, R. R. and Johnson, C. L. (2004). Secular trends in dietary intake in the United States. Annual Review of Nutrition, 24, 401–31. | www.annualreviews.org/doi/abs/10.1146/annurev.nutr.23.011702.073349 |
Chapter 4 | 46 | Mozaffarian, D. and Ludwig, D. S. (2015). The 2015 US dietary guidelines: Lifting the ban on total dietary fat. JAMA, 313(24), 2421–2. | jamanetwork.com/journals/jama/article-abstract/2338262 |
Chapter 4 | 47 | Ludwig, D. S., Hu, F. B., Tappy, L. and Brand-Miller, J. (2018). Dietary carbohydrates: Role of quality and quantity in chronic disease. BMJ, 361, k2340. | www.bmj.com/content/361/bmj.k2340 |
Chapter 4 | 48 | Rizzo, N. S., Jaceldo-Siegl, K., Sabate, J. and Fraser, G. E. (2013). Nutrient profiles of vegetarian and nonvegetarian dietary patterns. Journal of the Academy of Nutrition and Dietetics, 113(12), 1610–19. | www.sciencedirect.com/science/article/pii/S2212267213011131 |
Chapter 4 | 49 | Reynolds, A., Mann, J., Cummings, J., Winter, N., Mete, E. and Te Morenga, L. (2019). Carbohydrate quality and human health: A series of systematic reviews and meta-analyses. The Lancet, 393(10170), 434–45. | www.sciencedirect.com/science/article/pii/S0140673618318099 |
Chapter 4 | 50 | Turner‐McGrievy, G. M., Barnard, N. D. and Scialli, A. R. (2007). A two‐year randomized weight loss trial comparing a vegan diet to a more moderate low‐fat diet. Obesity, 15(9), 2276–81. | onlinelibrary.wiley.com/doi/abs/10.1038/oby.2007.270 |
Chapter 4 | 51 | The New Daily. Australians are among the heaviest drinkers in the world. New Daily. 23 September, 2018. | thenewdaily.com.au/life/wellbeing/2018/09/22/australians-among-heaviest-drinkers-world-according-world-health-organisation |
Chapter 4 | 52 | World Health Organization. (2018). Global status report on alcohol and health 2018. World Health Organization, United Nations, Geneva. | www.who.int/substance_abuse/publications/global_alcohol_report/gsr_2018/en |
Chapter 4 | 53 | Australian Institute of Health and Welfare. (2020). Alcohol, tobacco & other drugs in Australia. AIHW, Australian Government, Canberra. | www.aihw.gov.au/reports/alcohol/alcohol-tobacco-other-drugs-australia/contents/introduction |
Chapter 4 | 54 | Centers for Disease Control and Prevention. (2020). Alcohol and public health: Frequently asked questions. Centers for Disease Control and Prevention, Atlanta. | www.cdc.gov/alcohol/faqs.htm |
Chapter 4 | 55 | Cronise, R. J., Sinclair, D. A. and Bremer, A. A. (2017). Oxidative priority, meal frequency, and the energy economy of food and activity: Implications for longevity, obesity, and cardiometabolic disease. Metabolic Syndrome and Related Disorders, 15(1), 6–17. | www.liebertpub.com/doi/abs/10.1089/MET.2016.0108 |
Chapter 4 | 56 | Christiansen, P., Rose, A., Randall-Smith, L. and Hardman, C. A. (2016). Alcohol’s acute effect on food intake is mediated by inhibitory control impairments. Health Psychology, 35(5), 518. | psycnet.apa.org/doiLanding?doi=10.1037%2Fhea0000320 |
Chapter 4 | 57 | Cains, S., Blomeley, C., Kollo, M., Rácz, R. and Burdakov, D. (2017). Agrp neuron activity is required for alcohol-induced overeating. Nature Communications, 8(1), 1–8. | www.nature.com/articles/ncomms14014 |
Chapter 4 | 58 | Turner-McGrievy, G. M., Davidson, C. R., Wingard, E. E., Wilcox, S. and Frongillo, E. A. (2015). Comparative effectiveness of plant-based diets for weight loss: A randomized controlled trial of five different diets. Nutrition, 31(2), 350–8. | www.sciencedirect.com/science/article/pii/S0899900714004237 |
Chapter 4 | 59 | Wright, N., Wilson, L., Smith, M., Duncan, B. and McHugh, P. (2017). The BROAD study: A randomised controlled trial using a whole food plant-based diet in the community for obesity, ischaemic heart disease or diabetes. Nutrition & Diabetes, 7(3), e256. | www.nature.com/articles/nutd20173 |
Chapter 4 | 60 | Barnard, N. D. et al. (2020). A Mediterranean diet and low-fat vegan diet to improve body weight and cardiometabolic risk factors: A randomized, cross-over trial. Journal of the American College of Nutrition, 1–13. | www.tandfonline.com/doi/full/10.1080/07315724.2020.1869625 |
Chapter 4 | 61 | Hruby, A. and Hu, F. B. (2015). The epidemiology of obesity: A big picture. Pharmacoeconomics, 33(7), 673–89. | link.springer.com/article/10.1007/s40273-014-0243-x |
Chapter 4 | 62 | Butler, T. L. et al. (2008). Cohort profile: The Adventist Health Study-2 (AHS-2). International Journal of Epidemiology, 37(2), 260–5. | www.academia.edu/download/40552306/dym165v1.pdf |
Chapter 4 | 63 | Hales, C. M., Carroll, M. D., Fryar, C. D. and Ogden, C. L. (2017). Prevalence of obesity among adults and youth: United States, 2015–2016. Centers for Disease Control and Prevention, Atlanta. | stacks.cdc.gov/view/cdc/49223 |
Chapter 4 | 64 | Hall, K. D. and Guo, J. (2017). Obesity energetics: Body weight regulation and the effects of diet composition. Gastroenterology, 152(7), 1718–27. | www.sciencedirect.com/science/article/pii/S001650851730152X |
Chapter 4 | 65 | Hall, K. D. (2015). Prescribing low-fat diets: Useless for long-term weight loss. The Lancet Diabetes & Endocrinology, 3(12), 920–1. | www.adipositas-stiftung.de/cms/images/stories/pdf/Prescribing_low-fat_diets_-_useless_for_long-term_weight_loss.pdf |
Chapter 4 | 66 | Johnston, B. C. et al. (2014). Comparison of weight loss among named diet programs in overweight and obese adults: A meta-analysis. JAMA, 312(9), 923–33. | jamanetwork.com/journals/jama/article-abstract/1900510 |
Chapter 4 | 67 | Tobias, D. K., Chen, M., Manson, J. E., Ludwig, D. S., Willett, W. and Hu, F. B. (2015). Effect of low-fat diet interventions versus other diet interventions on long-term weight change in adults: A systematic review and meta-analysis. The Lancet Diabetes & Endocrinology, 3(12), 968–79. | www.sciencedirect.com/science/article/pii/S2213858715003678 |
Chapter 4 | 68 | Churuangsuk, C., Kherouf, M., Combet, E. and Lean, M. (2018). Low‐carbohydrate diets for overweight and obesity: A systematic review of the systematic reviews. Obesity Reviews, 19(12), 1700–18. | onlinelibrary.wiley.com/doi/abs/10.1111/obr.12744 |
Chapter 4 | 69 | Gardner, C. D. et al. (2018). Effect of low-fat vs low-carbohydrate diet on 12-month weight loss in overweight adults and the association with genotype pattern or insulin secretion: The DIETFITS randomized clinical trial. JAMA, 319(7), 667–79. | jamanetwork.com/journals/jama/article-abstract/2673150 |
Chapter 4 | 70 | Hall, K. D. et al. (2021). Effect of a plant-based, low-fat diet versus an animal-based, ketogenic diet on ad libitum energy intake. Nature Medicine, 27, 344–53. | www.nature.com/articles/s41591-020-01209-1 |
Chapter 4 | 71 | Westerterp, K. R. (2004). Diet induced thermogenesis. Nutrition & Metabolism, 1(1), 1–5. | nutritionandmetabolism.biomedcentral.com/articles/10.1186/1743-7075-1-5 |
Chapter 4 | 72 | Ritchie, H. and Roser, M. (2019). Meat and Dairy Production: Which countries eat the most meat? Our World in Data. | ourworldindata.org/meat-production#which-countries-eat-the-most-meat |
Chapter 4 | 73 | Willcox, D. C., Scapagnini, G. and Willcox, B. J. (2014). Healthy aging diets other than the Mediterranean: A focus on the Okinawan diet. Mechanisms of Ageing and Development, 136, 148–62. | www.sciencedirect.com/science/article/pii/S0047637414000037 |
Chapter 4 | 74 | Centers for Disease Control and Prevention. (2020). Diabetes: Prediabetes – your chance to prevent type 2 diabetes. Centers for Disease Control and Prevention, Atlanta. | www.cdc.gov/diabetes/basics/prediabetes.html |
Chapter 4 | 75 | Bullard, K. M. et al. (2018). Prevalence of diagnosed diabetes in adults by diabetes type – United States, 2016. Morbidity and Mortality Weekly Report, 67(12), 359. | www.ncbi.nlm.nih.gov/pmc/articles/pmc5877361 |
Chapter 4 | 76 | Diabetes Australia. Diabetes in Australia. Diabetes Australia. | www.diabetesaustralia.com.au/about-diabetes/diabetes-in-australia |
Chapter 4 | 77 | Shah, R. (2015). Assessing the risk of diabetes. BMJ, 351, h4525. | www.jstor.org/stable/26521721 |
Chapter 4 | 78 | Gudala, K., Bansal, D., Schifano, F. and Bhansali, A. (2013). Diabetes mellitus and risk of dementia: A meta‐analysis of prospective observational studies. Journal of Diabetes Investigation, 4(6), 640–50. | onlinelibrary.wiley.com/doi/full/10.1111/jdi.12087 |
Chapter 4 | 79 | Morris, M. C., Tangney, C. C., Wang, Y., Sacks, F. M., Barnes, L. L., Bennett, D. A. and Aggarwal, N. T. (2015). MIND diet slows cognitive decline with aging. Alzheimer’s & Dementia, 11(9), 1015–22. | www.sciencedirect.com/science/article/pii/S1552526015001946 |
Chapter 4 | 80 | De Cosmo, S. et al. (2016). Predictors of chronic kidney disease in type 2 diabetes: A longitudinal study from the AMD Annals initiative. Medicine, 95(27), e4007. | www.ncbi.nlm.nih.gov/pmc/articles/PMC5058807 |
Chapter 4 | 81 | McMacken, M. and Shah, S. (2017). A plant-based diet for the prevention and treatment of type 2 diabetes. Journal of Geriatric Cardiology, 14(5), 342. | www.ncbi.nlm.nih.gov/pmc/articles/pmc5466941 |
Chapter 4 | 82 | Diabetes Australia. Type 2 diabetes. Diabetes Australia. | www.diabetesaustralia.com.au/type-2-diabetes |
Chapter 4 | 83 | Rojas, J., Chávez, M., Olivar, L., Rojas, M., Morillo, J., Mejías, J., Calvo, M. and Bermúdez, V. (2014). Polycystic ovary syndrome, insulin resistance, and obesity: Navigating the pathophysiologic labyrinth. International Journal of Reproductive Medicine, 2014, 719050. | www.ncbi.nlm.nih.gov/pmc/articles/PMC4334071 |
Chapter 4 | 84 | DeFronzo, R. A., Bonadonna, R. C. and Ferrannini, E. (1992). Pathogenesis of NIDDM: A balanced overview. Diabetes Care, 15(3), 318–68. | care.diabetesjournals.org/content/15/3/318 |
Chapter 4 | 85 | Pories, W. J. and Dohm, G. L. (2012). Diabetes: Have we got it all wrong? Hyperinsulinism as the culprit: Surgery provides the evidence. Diabetes Care, 35(12), 2438–42. | care.diabetesjournals.org/content/35/12/2438 |
Chapter 4 | 86 | Centers for Disease Control and Prevention. New CDC report: More than 100 million Americans have diabetes or prediabetes. 18 July 2017. CDC Newsroom. | www.cdc.gov/media/releases/2017/p0718-diabetes-report.html |
Chapter 4 | 87 | Diabetes Australia. Pre-diabetes. Diabetes Australia. | www.diabetesaustralia.com.au/pre-diabetes |
Chapter 4 | 88 | National Center for Chronic Disease Prevention and Health Promotion. (2020). Diabetes and prediabetes. Centers for Disease Control and Prevention, Atlanta. | www.cdc.gov/chronicdisease/resources/publications/factsheets/diabetes-prediabetes.htm |
Chapter 4 | 89 | Diabetes UK. Sugar and diabetes. British Diabetic Association. | www.diabetes.org.uk/guide-to-diabetes/enjoy-food/eating-with-diabetes/food-groups/sugar-and-diabetes |
Chapter 4 | 90 | Lee, Y. and Park, K. (2017). Adherence to a vegetarian diet and diabetes risk: A systematic review and meta-analysis of observational studies. Nutrients, 9(6), 603. | www.mdpi.com/2072-6643/9/6/603 |
Chapter 4 | 91 | Willcox, D. C., Willcox, B. J., Todoriki, H. and Suzuki, M. (2009). The Okinawan diet: Health implications of a low-calorie, nutrient-dense, antioxidant-rich dietary pattern low in glycemic load. Journal of the American College of Nutrition, 28(sup4), 500S–16S. | www.tandfonline.com/doi/abs/10.1080/07315724.2009.10718117 |
Chapter 4 | 92 | Krssak, M. F. P. K. et al. (1999). Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: A 1H NMR spectroscopy study. Diabetologia, 42(1), 113–16. | link.springer.com/article/10.1007/s001250051123 |
Chapter 4 | 93 | Perseghin, G. et al. (1999). Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: A 1H-13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents. Diabetes, 48(8), 1600–6. | diabetes.diabetesjournals.org/content/48/8/1600 |
Chapter 4 | 94 | Shulman, G. I. (2014). Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. New England Journal of Medicine, 371(12), 1131–41. | www.nejm.org/doi/full/10.1056/NEJMra1011035 |
Chapter 4 | 95 | Imamura, F. et al. (2016). Effects of saturated fat, polyunsaturated fat, monounsaturated fat, and carbohydrate on glucose-insulin homeostasis: A systematic review and meta-analysis of randomised controlled feeding trials. PLOS Medicine, 13(7), e1002087. | journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1002087 |
Chapter 4 | 96 | Talaei, M., Wang, Y. L., Yuan, J. M., Pan, A. and Koh, W. P. (2017). Meat, dietary heme iron, and risk of type 2 diabetes mellitus: The Singapore Chinese Health Study. American Journal of Epidemiology, 186(7), 824–33. | academic.oup.com/aje/article-abstract/186/7/824/3848997 |
Chapter 4 | 97 | Orban, E., Schwab, S., Thorand, B. and Huth, C. (2014). Association of iron indices and type 2 diabetes: A meta‐analysis of observational studies. Diabetes/Metabolism Research and Reviews, 30(5), 372–94. | onlinelibrary.wiley.com/doi/abs/10.1002/dmrr.2506 |
Chapter 4 | 98 | Bao, W., Rong, Y., Rong, S. and Liu, L. (2012). Dietary iron intake, body iron stores, and the risk of type 2 diabetes: A systematic review and meta-analysis. BMC Medicine, 10(1), 119. | link.springer.com/article/10.1186/1741-7015-10-119 |
Chapter 4 | 99 | Zhao, Z., Li, S., Liu, G., Yan, F., Ma, X., Huang, Z. and Tian, H. (2012). Body iron stores and heme-iron intake in relation to risk of type 2 diabetes: A systematic review and meta-analysis. PLOS One, 7(7), e41641. | journals.plos.org/plosone/article?id=10.1371/journal.pone.0041641 |
Chapter 4 | 100 | Malik, V. S., Popkin, B. M., Bray, G. A., Després, J. P., Willett, W. C. and Hu, F. B. (2010). Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: A meta-analysis. Diabetes Care, 33(11), 2477–83. | care.diabetesjournals.org/content/33/11/2477 |
Chapter 4 | 101 | Malik, V. S., Popkin, B. M., Bray, G. A., Després, J. P. and Hu, F. B. (2010). Sugar-sweetened beverages, obesity, type 2 diabetes mellitus, and cardiovascular disease risk. Circulation, 121(11), 1356–64. | www.ahajournals.org/doi/abs/10.1161/circulationaha.109.876185 |
Chapter 4 | 102 | Tian, S., Xu, Q., Jiang, R., Han, T., Sun, C. and Na, L. (2017). Dietary protein consumption and the risk of type 2 diabetes: A systematic review and meta-analysis of cohort studies. Nutrients, 9(9), 982. | www.mdpi.com/2072-6643/9/9/982/htm |
Chapter 4 | 103 | Uribarri, J. et al. (2015). Dietary advanced glycation end products and their role in health and disease. Advances in Nutrition, 6(4), 461–73. | academic.oup.com/advances/article-abstract/6/4/461/4568678 |
Chapter 4 | 104 | Kim, Y., Keogh, J. and Clifton, P. (2015). A review of potential metabolic etiologies of the observed association between red meat consumption and development of type 2 diabetes mellitus. Metabolism, 64(7), 768–79. | www.sciencedirect.com/science/article/pii/S0026049515000864 |
Chapter 4 | 105 | Malik, V. S. and Hu, F. B. (2015). Fructose and cardiometabolic health: What the evidence from sugar-sweetened beverages tells us. Journal of the American College of Cardiology, 66(14), 1615–24. | www.onlinejacc.org/content/66/14/1615 |
Chapter 4 | 106 | Wang, P. Y., Fang, J. C., Gao, Z. H., Zhang, C. and Xie, S. Y. (2016). Higher intake of fruits, vegetables or their fiber reduces the risk of type 2 diabetes: A meta‐analysis. Journal of Diabetes Investigation, 7(1), 56–69. | onlinelibrary.wiley.com/doi/abs/10.1111/jdi.12376 |
Chapter 4 | 107 | Mai, B. H. and Yan, L. J. (2019). The negative and detrimental effects of high fructose on the liver, with special reference to metabolic disorders. Diabetes, Metabolic Syndrome and Obesity: Targets And Therapy, 12, 821–6. | www.ncbi.nlm.nih.gov/pmc/articles/PMC6549781 |
Chapter 4 | 108 | Mazidi, M. and Kengne, A. P. (2019). Higher adherence to plant-based diets are associated with lower likelihood of fatty liver. Clinical Nutrition, 38(4), 1672–7. | pubmed.ncbi.nlm.nih.gov/30578029 |
Chapter 4 | 109 | Viguiliouk, E. et al. (2015). Effect of replacing animal protein with plant protein on glycemic control in diabetes: A systematic review and meta-analysis of randomized controlled trials. Nutrients, 7(12), 9804–24. | www.mdpi.com/2072-6643/7/12/5509 |
Chapter 4 | 110 | Aune, D., Norat, T., Romundstad, P. and Vatten, L. J. (2013). Whole grain and refined grain consumption and the risk of type 2 diabetes: A systematic review and dose-response meta-analysis of cohort studies. European Journal of Epidemiology, 28(11), 845–58. | link.springer.com/content/pdf/10.1007/s10654-013-9852-5.pdf |
Chapter 4 | 111 | Satija, A. et al. (2016). Plant-based dietary patterns and incidence of type 2 diabetes in US men and women: Results from three prospective cohort studies. PLOS Medicine, 13(6), e1002039. | journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1002039 |
Chapter 4 | 112 | Schulze, M. B., Schulz, M., Heidemann, C., Schienkiewitz, A., Hoffmann, K. and Boeing, H. (2007). Fiber and magnesium intake and incidence of type 2 diabetes: A prospective study and meta-analysis. Archives of Internal Medicine, 167(9), 956–65. | jamanetwork.com/journals/jamainternalmedicine/article-abstract/412391 |
Chapter 4 | 113 | Ley, S. H., Hamdy, O., Mohan, V. and Hu, F. B. (2014). Prevention and management of type 2 diabetes: Dietary components and nutritional strategies. The Lancet, 383(9933), 1999–2007. | www.sciencedirect.com/science/article/pii/S0140673614606139 |
Chapter 4 | 114 | Chen, Z. et al. (2018). Plant versus animal based diets and insulin resistance, prediabetes and type 2 diabetes: The Rotterdam Study. European Journal of Epidemiology, 33(9), 883–93. | link.springer.com/article/10.1007/s10654-018-0414-8 |
Chapter 4 | 115 | Kahleova, H., Tura, A., Hill, M., Holubkov, R. and Barnard, N. D. (2018). A plant-based dietary intervention improves beta-cell function and insulin resistance in overweight adults: A 16-week randomized clinical trial. Nutrients, 10(2), 189. | www.mdpi.com/2072-6643/10/2/189 |
Chapter 4 | 116 | Soare, A. et al. (2016). A 6-month follow-up study of the randomized controlled Ma-Pi macrobiotic dietary intervention (MADIAB trial) in type 2 diabetes. Nutrition & Diabetes, 6(8), e222. | www.nature.com/articles/nutd201629 |
Chapter 4 | 117 | Anderson, J. W. and Ward, K. (1979). High-carbohydrate, high-fiber diets for insulin-treated men with diabetes mellitus. American Journal of Clinical Nutrition, 32(11), 2312–21. | academic.oup.com/ajcn/article-abstract/32/11/2312/4692116 |
Chapter 4 | 118 | Bueno, N. B., de Melo, I. S. V., de Oliveira, S. L. and da Rocha Ataide, T. (2013). Very-low-carbohydrate ketogenic diet v. low-fat diet for long-term weight loss: A meta-analysis of randomised controlled trials. British Journal of Nutrition, 110(7), 1178–87. | www.cambridge.org/core/journals/british-journal-of-nutrition/article/verylowcarbohydrate-ketogenic-diet-v-lowfat-diet-for-longterm-weight-loss-a-metaanalysis-of-randomised-controlled-trials/6FD9F975BAFF1D46F84C8BA9CE860783 |
Chapter 4 | 119 | Rosenbaum, M. et al. (2019). Glucose and lipid homeostasis and inflammation in humans following an isocaloric ketogenic diet. Obesity, 27(6), 971–81. | onlinelibrary.wiley.com/doi/abs/10.1002/oby.22468 |
Chapter 4 | 120 | Numao, S., Kawano, H., Endo, N., Yamada, Y., Konishi, M., Takahashi, M. and Sakamoto, S. (2012). Short-term low carbohydrate/high-fat diet intake increases postprandial plasma glucose and glucagon-like peptide-1 levels during an oral glucose tolerance test in healthy men. European Journal of Clinical Nutrition, 66(8), 926–31. | www.nature.com/articles/ejcn201258 |
Chapter 4 | 121 | Seidelmann, S. B. et al. (2018). Dietary carbohydrate intake and mortality: A prospective cohort study and meta-analysis. The Lancet Public Health, 3(9), e419–28. | www.sciencedirect.com/science/article/pii/S246826671830135X |
Chapter 4 | 122 | Garber, A. J. et al. (2020). Consensus statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the comprehensive type 2 diabetes management algorithm – 2020 executive summary. Endocrine Practice, 26(1), 107–39. | www.endocrinepractice.org/article/S1530-891X(20)35066-7 |
Chapter 4 | 123 | Anderson, J. W., Konz, E. C., Frederich, R. C. and Wood, C. L. (2001). Long-term weight-loss maintenance: A meta-analysis of US studies. American Journal of Clinical Nutrition, 74(5), 579–84. | academic.oup.com/ajcn/article-abstract/74/5/579/4737391 |
Chapter 4 | 124 | Cruwys, T., Norwood, R., Chachay, V. S., Ntontis, E. and Sheffield, J. (2020). ‘An important part of who I am’: The predictors of dietary adherence among weight-loss, vegetarian, vegan, paleo, and gluten-free dietary groups. Nutrients, 12(4), 970. | www.mdpi.com/2072-6643/12/4/970 |
Chapter | Reference Number | Content | URL |
---|---|---|---|
Chapter 5 | 1 | World Health Organization. Cardiovascular diseases (CVDs). WHO Newsroom. 17 May 2017. | www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) |
Chapter 5 | 2 | Perk, J. et al. (2012). European guidelines on cardiovascular disease prevention in clinical practice (version 2012): The fifth joint task force of the European Society of Cardiology and other societies on cardiovascular disease prevention in clinical practice. Atherosclerosis, 223(1), 1–68. | www.sciencedirect.com/science/article/abs/pii/S0021915012002882 |
Chapter 5 | 3 | Australian Government Department of Health. (2020). What we’re doing about cardiovascular conditions. Australian Government, Canberra. | www.health.gov.au/health-topics/chronic-conditions/what-were-doing-about-chronic-conditions/what-were-doing-about-cardiovascular-conditions |
Chapter 5 | 4 | Benjamin, E. J. et al. (2019). Heart disease and stroke statistics – 2019 update: A report from the American Heart Association. Circulation, 139(10), e56–528. | pubmed.ncbi.nlm.nih.gov/30700139 |
Chapter 5 | 5 | Mensah, G. A. et al. (2017). Decline in cardiovascular mortality: Possible causes and implications. Circulation Research, 120(2), 366–80. | www.ahajournals.org/doi/abs/10.1161/circresaha.116.309115 |
Chapter 5 | 6 | Enos, W. F., Holmes, R. H. and Beyer, J. (1953). Coronary disease among United States soldiers killed in action in Korea: Preliminary report. Journal of the American Medical Association, 152(12), 1090–3. | jamanetwork.com/journals/jama/article-abstract/286620 |
Chapter 5 | 7 | McNamara, J. J., Molot, M. A., Stremple, J. F. and Cutting, R. T. (1971). Coronary artery disease in combat casualties in Vietnam. JAMA, 216(7), 1185–7. | jamanetwork.com/journals/jama/article-abstract/336112 |
Chapter 5 | 8 | Stary, H. C. (1989). Evolution and progression of atherosclerotic lesions in coronary arteries of children and young adults. Arteriosclerosis, 9(1 Suppl), I19. | www.ncbi.nlm.nih.gov/pubmed/2912430 |
Chapter 5 | 9 | Berenson, G. S., Srinivasan, S. R., Bao, W., Newman, W. P., Tracy, R. E. and Wattigney, W. A. (1998). Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. New England Journal of Medicine, 338(23), 1650–6. | www.nejm.org/doi/full/10.1056/nejm199806043382302 |
Chapter 5 | 10 | Strong, J. P. et al. (1999). Prevalence and extent of atherosclerosis in adolescents and young adults: Implications for prevention from the Pathobiological Determinants of Atherosclerosis in Youth Study. JAMA, 281(8), 727–35. | jamanetwork.com/journals/jama/article-abstract/188840 |
Chapter 5 | 11 | Napoli, C., D’Armiento, F. P., Mancini, F. P., Postiglione, A., Witztum, J. L., Palumbo, G. and Palinski, W. (1997). Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal hypercholesterolemia. Intimal accumulation of low density lipoprotein and its oxidation precede monocyte recruitment into early atherosclerotic lesions. Journal of Clinical Investigation, 100(11), 2680–90. | www.jci.org/articles/view/119813 |
Chapter 5 | 12 | Mach, F. et al. (2020). 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk: The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). European Heart Journal, 41(1), 111–88. | academic.oup.com/eurheartj/article-abstract/41/1/111/5556353 |
Chapter 5 | 13 | Linton, M. R. F. et al. (2000). The role of lipids and lipoproteins in atherosclerosis. In Feingold, K.R. et al. (eds). Endotext [Internet]. MDText.com, South Dartmouth. | www.ncbi.nlm.nih.gov/sites/books/NBK343489 |
Chapter 5 | 14 | Moore, K. J., Sheedy, F. J. and Fisher, E. A. (2013). Macrophages in atherosclerosis: A dynamic balance. Nature Reviews Immunology, 13(10), 709–21. | www.nature.com/articles/nri3520 |
Chapter 5 | 15 | Rafieian-Kopaei, M., Setorki, M., Doudi, M., Baradaran, A. and Nasri, H. (2014). Atherosclerosis: Process, indicators, risk factors and new hopes. International Journal of Preventive Medicine, 5(8), 927. | www.ncbi.nlm.nih.gov/pmc/articles/PMC4258672 |
Chapter 5 | 16 | Connor, W. E., Cerqueira, M. T., Connor, R. W., Wallace, R. B., Malinow, M. R. and Casdorph, H. R. (1978). The plasma lipids, lipoproteins, and diet of the Tarahumara Indians of Mexico. American Journal of Clinical Nutrition, 31(7), 1131–42. | academic.oup.com/ajcn/article-abstract/31/7/1131/4650360 |
Chapter 5 | 17 | Campbell, T. C., Parpia, B. and Chen, J. (1998). Diet, lifestyle, and the etiology of coronary artery disease: The Cornell China study. American Journal of Cardiology, 82(10), 18–21. | www.sciencedirect.com/science/article/pii/S0002914998007188 |
Chapter 5 | 18 | Willcox, B. J. et al. (2007). Caloric restriction, the traditional Okinawan diet, and healthy aging: The diet of the world’s longest‐lived people and its potential impact on morbidity and life span. Annals of the New York Academy of Sciences, 1114(1), 434–55. | s.put.re/edWLkDBZ.pdf |
Chapter 5 | 19 | Kaplan, H. et al. (2017). Coronary atherosclerosis in indigenous South American Tsimane: A cross-sectional cohort study. The Lancet, 389(10080), 1730–9. | www.sciencedirect.com/science/article/pii/S0140673617307523 |
Chapter 5 | 20 | McMurry, M. P., Cerqueira, M. T., Connor, S. L. and Connor, W. E. (1991). Changes in lipid and lipoprotein levels and body weight in Tarahumara Indians after consumption of an affluent diet. New England Journal of Medicine, 325(24), 1704–8. | www.nejm.org/doi/full/10.1056/NEJM199112123252405 |
Chapter 5 | 21 | Ference, B. A. et al. (2017). Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. European Heart Journal, 38(32), 2459–72. | academic.oup.com/eurheartj/article-abstract/38/32/2459/3745109 |
Chapter 5 | 22 | Abdullah, S. M. et al. (2018). Long-term association of low-density lipoprotein cholesterol with cardiovascular mortality in individuals at low 10-year risk of atherosclerotic cardiovascular disease: Results from the Cooper Center Longitudinal Study. Circulation, 138(21), 2315–25. | www.ahajournals.org/doi/abs/10.1161/CIRCULATIONAHA.118.034273 |
Chapter 5 | 23 | World Health Organization. (2002). The World Health Report 2002: Reducing risks, promoting healthy life. World Health Organization, Geneva. | www.who.int/whr/2002/en/whr02_en.pdf |
Chapter 5 | 24 | Ference, B. A. et al. (2012). Effect of long-term exposure to lower low-density lipoprotein cholesterol beginning early in life on the risk of coronary heart disease: A Mendelian randomization analysis. Journal of the American College of Cardiology, 60(25), 2631–9. | www.onlinejacc.org/content/60/25/2631 |
Chapter 5 | 25 | Silverman, M. G. et al. (2016). Association between lowering LDL-C and cardiovascular risk reduction among different therapeutic interventions: A systematic review and meta-analysis. JAMA, 316(12), 1289–97. | jamanetwork.com/journals/jama/article-abstract/2556125 |
Chapter 5 | 26 | Centers for Disease Control and Prevention. (2020). Cholesterol: Getting your cholesterol checked. Centers for Disease Control and Prevention, Atlanta. | www.cdc.gov/cholesterol/cholesterol_screening.htm |
Chapter 5 | 27 | Von Birgelen, C., Hartmann, M., Mintz, G. S., Baumgart, D., Schmermund, A. and Erbel, R. (2003). Relation between progression and regression of atherosclerotic left main coronary artery disease and serum cholesterol levels as assessed with serial long-term (≥ 12 months) follow-up intravascular ultrasound. Circulation, 108(22), 2757–62. | www.ahajournals.org/doi/abs/10.1161/01.CIR.0000103664.47406.49 |
Chapter 5 | 28 | Fernández-Friera, L. et al. (2017). Normal LDL-cholesterol levels are associated with subclinical atherosclerosis in the absence of risk factors. Journal of the American College of Cardiology, 70(24), 2979–91. | www.jacc.org/doi/full/10.1016/j.jacc.2017.10.024 |
Chapter 5 | 29 | Carrington, M. and Stewart, S. (2011). Australia’s cholesterol crossroads: An analysis of 199,331 GP patient cholesterol records: A report of cholesterol levels and management of dyslipidaemia in primary care from 2004 to mid 2009. Baker IDI Heart and Diabetes Institute, Melbourne. | www.e-gps.com.au/Assets/Files/Australia_s%20Cholesterol%20Crossroads%20Report_FINAL.pdf |
Chapter 5 | 30 | O’Keefe, J. H., Cordain, L., Harris, W. H., Moe, R. M. and Vogel, R. (2004). Optimal low-density lipoprotein is 50 to 70 mg/dl: Lower is better and physiologically normal. Journal of the American College of Cardiology, 43(11), 2142–6. | www.onlinejacc.org/content/43/11/2142 |
Chapter 5 | 31 | De Biase, S. G., Fernandes, S. F. C., Gianini, R. J. and Duarte, J. L. G. (2007). Vegetarian diet and cholesterol and triglycerides levels. Arquivos Brasileiros de Cardiologia, 88(1), 35. | www.arquivosonline.com.br/english/2007/8801/pdf/i8801006.pdf |
Chapter 5 | 32 | Draper, A., Lewis, J., Malhotra, N. and Wheeler, L. E. (1993). The energy and nutrient intakes of different types of vegetarian: A case for supplements? British Journal of Nutrition, 69(1), 3–19. | www.cambridge.org/core/journals/british-journal-of-nutrition/article/energy-and-nutrient-intakes-of-different-types-of-vegetarian-a-case-for-supplements/D2611B2F6D0412714F46FCC23F345945 |
Chapter 5 | 33 | Ball, M. J. and Bartlett, M. A. (1999). Dietary intake and iron status of Australian vegetarian women. American Journal of Clinical Nutrition, 70(3), 353–8. | academic.oup.com/ajcn/article-abstract/70/3/353/4714844 |
Chapter 5 | 34 | Rizzo, N. S., Jaceldo-Siegl, K., Sabate, J. and Fraser, G. E. (2013). Nutrient profiles of vegetarian and nonvegetarian dietary patterns. Journal of the Academy of Nutrition and Dietetics, 113(12), 1610–19. | www.sciencedirect.com/science/article/pii/S2212267213011131 |
Chapter 5 | 35 | Benatar, J. R. and Stewart, R. A. (2018). Cardiometabolic risk factors in vegans: A meta-analysis of observational studies. PLOS One, 13(12), e0209086. | journals.plos.org/plosone/article?id=10.1371/journal.pone.0209086 |
Chapter 5 | 36 | Jenkins, D. J. et al. (2005). Direct comparison of a dietary portfolio of cholesterol-lowering foods with a statin in hypercholesterolemic participants. American Journal of Clinical Nutrition, 81(2), 380–7. | academic.oup.com/ajcn/article-abstract/81/2/380/4607446 |
Chapter 5 | 37 | Gigleux, I. et al. (2007). Comparison of a dietary portfolio diet of cholesterol-lowering foods and a statin on LDL particle size phenotype in hypercholesterolaemic participants. British Journal of Nutrition, 98(6), 1229–36. | www.cambridge.org/core/journals/british-journal-of-nutrition/article/comparison-of-a-dietary-portfolio-diet-of-cholesterollowering-foods-and-a-statin-on-ldl-particle-size-phenotype-in-hypercholesterolaemic-participants/A70B71AD80C0A69CAA7811DCC0060D88 |
Chapter 5 | 38 | Lemieux, I. et al. (2001). Total cholesterol/HDL cholesterol ratio vs LDL cholesterol/HDL cholesterol ratio as indices of ischemic heart disease risk in men: The Quebec Cardiovascular Study. Archives of Internal Medicine, 161(22), 2685–92. | jamanetwork.com/journals/jamainternalmedicine/article-abstract/752318 |
Chapter 5 | 39 | Huang, T., Yang, B., Zheng, J., Li, G., Wahlqvist, M. L. and Li, D. (2012). Cardiovascular disease mortality and cancer incidence in vegetarians: A meta-analysis and systematic review. Annals of Nutrition and Metabolism, 60(4), 233–40. | www.karger.com/Article/FullText/337301 |
Chapter 5 | 40 | Orlich, M. J. et al. (2013). Vegetarian dietary patterns and mortality in Adventist Health Study 2. JAMA Internal Medicine, 173(13), 1230–8. | jamanetwork.com/journals/jamainternalmedicine/article-abstract/1710093 |
Chapter 5 | 41 | Wang, F., Zheng, J., Yang, B., Jiang, J., Fu, Y. and Li, D. (2015). Effects of vegetarian diets on blood lipids: A systematic review and meta‐analysis of randomized controlled trials. Journal of the American Heart Association, 4(10), e002408. | www.ahajournals.org/doi/abs/10.1161/JAHA.115.002408 |
Chapter 5 | 42 | Rohatgi, A. et al. (2014). HDL cholesterol efflux capacity and incident cardiovascular events. New England Journal of Medicine, 371(25), 2383–93. | www.nejm.org/doi/full/10.1056/NEJMoa1409065 |
Chapter 5 | 43 | Nicholls, S. J. et al. (2006). Consumption of saturated fat impairs the anti-inflammatory properties of high-density lipoproteins and endothelial function. Journal of the American College of Cardiology, 48(4), 715–20. | www.onlinejacc.org/content/48/4/715 |
Chapter 5 | 44 | Clarke, R., Frost, C., Collins, R., Appleby, P. and Peto, R. (1997). Dietary lipids and blood cholesterol: Quantitative meta-analysis of metabolic ward studies. BMJ, 314(7074), 112. | www.bmj.com/content/314/7074/112 |
Chapter 5 | 45 | Hu, F. B. et al. (1997). Dietary fat intake and the risk of coronary heart disease in women. New England Journal of Medicine, 337(21), 1491–9. | www.nejm.org/doi/full/10.1056/nejm199711203372102 |
Chapter 5 | 46 | Li, Y. et al. (2015). Saturated fats compared with unsaturated fats and sources of carbohydrates in relation to risk of coronary heart disease: A prospective cohort study. Journal of the American College of Cardiology, 66(14), 1538–48. | www.onlinejacc.org/content/66/14/1538 |
Chapter 5 | 47 | Hooper, L., Martin, N., Jimoh, O. F., Kirk, C., Foster, E. and Abdelhamid, A. S. (2020). Reduction in saturated fat intake for cardiovascular disease. Cochrane Database of Systematic Reviews, (5), CD011737. | www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD011737.pub3 |
Chapter 5 | 48 | Mozaffarian, D., Micha, R. and Wallace, S. (2010). Effects on coronary heart disease of increasing polyunsaturated fat in place of saturated fat: A systematic review and meta-analysis of randomized controlled trials. PLOS Med, 7(3), e1000252. | journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1000252 |
Chapter 5 | 49 | Sacks, F. M. et al. (2017). Dietary fats and cardiovascular disease: A presidential advisory from the American Heart Association. Circulation, 136(3), e1–23. | www.ahajournals.org/doi/abs/10.1161/cir.0000000000000510 |
Chapter 5 | 50 | Vartiainen, E. et al. (2010). Thirty-five-year trends in cardiovascular risk factors in Finland. International Journal of Epidemiology, 39(2), 504–18. | academic.oup.com/ije/article-abstract/39/2/504/679767 |
Chapter 5 | 51 | Australian Institute of Health and Welfare. (2018). 4.9 – Diet. In Australia’s Health 2018. Australia’s Health series no. 16. AUS 221. AIHW, Australian Government, Canberra. | www.aihw.gov.au/getmedia/b1be8be0-4080-4be7-bf67-d6bec2c5829c/aihw-aus-221-chapter-4-9.pdf.aspx |
Chapter 5 | 52 | World Health Organization. Healthy diet. WHO Newsroom. 29 April 2020. | www.who.int/news-room/fact-sheets/detail/healthy-diet |
Chapter 5 | 53 | Wolfe, M. S., Sawyer, J. K., Morgan, T. M., Bullock, B. C. and Rudel, L. L. (1994). Dietary polyunsaturated fat decreases coronary artery atherosclerosis in a pediatric-aged population of African green monkeys. Arteriosclerosis and Thrombosis: A journal of vascular biology, 14(4), 587–97. | pubmed.ncbi.nlm.nih.gov/8148357 |
Chapter 5 | 54 | Zock, P. L., Blom, W. A., Nettleton, J. A. and Hornstra, G. (2016). Progressing insights into the role of dietary fats in the prevention of cardiovascular disease. Current Cardiology Reports, 18(11), 111. | link.springer.com/article/10.1007/s11886-016-0793-y |
Chapter 5 | 55 | Huth, P. J., Fulgoni, V. L., Keast, D. R., Park, K. and Auestad, N. (2013). Major food sources of calories, added sugars, and saturated fat and their contribution to essential nutrient intakes in the US diet: Data from the National Health and Nutrition Examination Survey (2003–2006). Nutrition Journal, 12(1), 116. | link.springer.com/article/10.1186/1475-2891-12-116 |
Chapter 5 | 56 | Clifton, P. M. and Keogh, J. B. (2017). A systematic review of the effect of dietary saturated and polyunsaturated fat on heart disease. Nutrition, Metabolism and Cardiovascular Diseases, 27(12), 1060–80. | www.sciencedirect.com/science/article/pii/S0939475317302375 |
Chapter 5 | 57 | Briggs, M. A., Petersen, K. S. and Kris-Etherton, P. M. (2017). Saturated fatty acids and cardiovascular disease: Replacements for saturated fat to reduce cardiovascular risk. Healthcare, 5(2), 29. | www.mdpi.com/2227-9032/5/2/29 |
Chapter 5 | 58 | Kris-Etherton, P. M., Petersen, K. and Van Horn, L. (2018). Convincing evidence supports reducing saturated fat to decrease cardiovascular disease risk. BMJ Nutrition, Prevention & Health, 1(1), 23. | nutrition.bmj.com/content/early/2018/11/15/bmjnph-2018-000009 |
Chapter 5 | 59 | Liu, A. G., Ford, N. A., Hu, F. B., Zelman, K. M., Mozaffarian, D. and Kris-Etherton, P. M. (2017). A healthy approach to dietary fats: Understanding the science and taking action to reduce consumer confusion. Nutrition Journal, 16(1), 53. | link.springer.com/article/10.1186/s12937-017-0271-4 |
Chapter 5 | 60 | de Oliveira Otto, M. C., Mozaffarian, D., Kromhout, D., Bertoni, A. G., Sibley, C. T., Jacobs Jr, D. R. and Nettleton, J. A. (2012). Dietary intake of saturated fat by food source and incident cardiovascular disease: The Multi-Ethnic Study of Atherosclerosis. American Journal of Clinical Nutrition, 96(2), 397–404. | academic.oup.com/ajcn/article-abstract/96/2/397/4576928 |
Chapter 5 | 61 | Engel, S. and Tholstrup, T. (2015). Butter increased total and LDL cholesterol compared with olive oil but resulted in higher HDL cholesterol compared with a habitual diet. American Journal of Clinical Nutrition, 102(2), 309–15. | academic.oup.com/ajcn/article-abstract/102/2/309/4564657 |
Chapter 5 | 62 | Brassard, D. et al. (2017). Comparison of the impact of SFAs from cheese and butter on cardiometabolic risk factors: A randomized controlled trial. American Journal of Clinical Nutrition, 105(4), 800–9. | academic.oup.com/ajcn/article-abstract/105/4/800/4638053 |
Chapter 5 | 63 | Chen, M. et al. (2016). Dairy fat and risk of cardiovascular disease in 3 cohorts of US adults. American Journal of Clinical Nutrition, 104(5), 1209–17. | academic.oup.com/ajcn/article-abstract/104/5/1209/4564387 |
Chapter 5 | 64 | De Goede, J., Geleijnse, J. M., Ding, E. L. and Soedamah-Muthu, S. S. (2015). Effect of cheese consumption on blood lipids: A systematic review and meta-analysis of randomized controlled trials. Nutrition Reviews, 73(5), 259–75. | academic.oup.com/nutritionreviews/article-abstract/73/5/259/1862394 |
Chapter 5 | 65 | Al-Shaar, L. et al. (2020). Red meat intake and risk of coronary heart disease among US men: Prospective cohort study. BMJ, 371, m4141. | www.bmj.com/content/371/bmj.m4141 |
Chapter 5 | 66 | Swaminathan, S. et al. (2021). Associations of cereal grains intake with cardiovascular disease and mortality across 21 countries in Prospective Urban and Rural Epidemiology study: Prospective cohort study. BMJ, 372, m4948. | www.bmj.com/content/372/bmj.m4948 |
Chapter 5 | 67 | Stanhope, K. L. et al. (2009). Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. Journal of Clinical Investigation, 119(5), 1322–34. | www.jci.org/articles/view/37385 |
Chapter 5 | 68 | Ferretti, G. et al. (2002). Glycated low density lipoproteins modify platelet properties: A compositional and functional study. Journal of Clinical Endocrinology & Metabolism, 87(5), 2180–4. | academic.oup.com/jcem/article-abstract/87/5/2180/2847087 |
Chapter 5 | 69 | Chowdhury, R. et al. (2014). Association of dietary, circulating, and supplement fatty acids with coronary risk: A systematic review and meta-analysis. Annals of Internal Medicine, 160(6), 398–406. | www.acpjournals.org/doi/abs/10.7326/m13-1788 |
Chapter 5 | 70 | Siri-Tarino, P. W., Sun, Q., Hu, F. B. and Krauss, R. M. (2010). Meta-analysis of prospective cohort studies evaluating the association of saturated fat with cardiovascular disease. American Journal of Clinical Nutrition, 91(3), 535–46. | academic.oup.com/ajcn/article-abstract/91/3/535/4597110 |
Chapter 5 | 71 | De Souza, R. J. et al. (2015). Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: Systematic review and meta-analysis of observational studies. BMJ, 351, h3978. | www.bmj.com/content/351/bmj.h3978 |
Chapter 5 | 72 | Dehghan, M. et al. (2017). Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): A prospective cohort study. The Lancet, 390(10107), 2050–62. | www.sciencedirect.com/science/article/pii/S0140673617322523 |
Chapter 5 | 73 | Hill, S. (2021). Saturated fat: Friend or foe? Plant Proof. | plantproof.com/saturated-fat-friend-or-foe |
Chapter 5 | 74 | Katan, M. B., Brouwer, I. A., Clarke, R., Geleijnse, J. M. and Mensink, R. P. (2010). Saturated fat and heart disease. American Journal of Clinical Nutrition, 92(2), 459–60. | academic.oup.com/ajcn/article-abstract/92/2/459/4597394 |
Chapter 5 | 75 | Pedersen, J. et al. (2011). The importance of reducing SFA to limit CHD. British Journal of Nutrition, 106(7), 961–3. | www.cambridge.org/core/journals/british-journal-of-nutrition/article/importance-of-reducing-sfa-to-limit-chd/757E6360E441B72E2E96DDAD8DAE3381 |
Chapter 5 | 76 | Hong, M. K., Mintz, G. S., Popma, J. J., Kent, K. M., Pichard, A. D., Satler, L. F. and Leon, M. B. (1994). Limitations of angiography for analyzing coronary atherosclerosis progression or regression. Annals of Internal Medicine, 121(5), 348–54. | www.acpjournals.org/doi/abs/10.7326/0003-4819-121-5-199409010-00007 |
Chapter 5 | 77 | Berry, C. et al. (2007). Comparison of intravascular ultrasound and quantitative coronary angiography for the assessment of coronary artery disease progression. Circulation, 115(14), 1851–7. | www.ahajournals.org/doi/full/10.1161/CIRCULATIONAHA.106.655654 |
Chapter 5 | 78 | Esselstyn, C. B. (1999). Updating a 12-year experience with arrest and reversal therapy for coronary heart disease (an overdue requiem for palliative cardiology). American Journal of Cardiology, 84(3), 339–41. | www.ajconline.org/article/S0002-9149(99)00290-8 |
Chapter 5 | 79 | Esselstyn Jr, C. B., Gendy, G., Doyle, J., Golubic, M. and Roizen, M. F. (2014). A way to reverse CAD? Journal of Family Practice, 63(7), 356–64. | go.gale.com/ps/i.do?id=GALE%7CA376071870 |
Chapter 5 | 80 | Blankenhorn, D. H. et al. (1993). Coronary angiographic changes with lovastatin therapy: The Monitored Atherosclerosis Regression Study (MARS). Annals of Internal Medicine, 119(10), 969–76. | www.acpjournals.org/doi/abs/10.7326/0003-4819-119-10-199311150-00002 |
Chapter 5 | 81 | Leren, T. P., Hjermann, I., Berg, K., Leren, P., Foss, O. P. and Viksmoen, L. (1988). Effects of lovastatin alone and in combination with cholestyramine on serum lipids and apolipoproteins in heterozygotes for familial hypercholesterolemia. Atherosclerosis, 73(2–3), 135–41. | www.sciencedirect.com/science/article/pii/0021915088900342 |
Chapter 5 | 82 | Ornish, D. et al. (1990). Can lifestyle changes reverse coronary heart disease? The Lifestyle Heart Trial. The Lancet, 336(8708), 129–33. | www.thelancet.com/journals/lancet/article/PII0140-6736(90)91656-U |
Chapter 5 | 83 | Ornish, D. et al. (1998). Intensive lifestyle changes for reversal of coronary heart disease. JAMA, 280(23), 2001–7. | pubmed.ncbi.nlm.nih.gov/9863851 |
Chapter 5 | 84 | Gupta, S. K. et al. (2011). Regression of coronary atherosclerosis through healthy lifestyle in coronary artery disease patients: Mount Abu Open Heart Trial. Indian Heart Journal, 63(5), 461–9. | europepmc.org/article/med/23550427 |
Chapter 5 | 85 | Estruch, R. et al. (2018). Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. New England Journal of Medicine, 378(25), e34. | www.nejm.org/doi/full/10.1056/NEJMoa1800389 |
Chapter 5 | 86 | De Lorgeril, M. et al. (1994). Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease. The Lancet, 343(8911), 1454–9. | www.sciencedirect.com/science/article/pii/S0140673694925801 |
Chapter 5 | 87 | Lăcătușu, C. M., Grigorescu, E. D., Floria, M., Onofriescu, A. and Mihai, B. M. (2019). The Mediterranean diet: From an environment-driven food culture to an emerging medical prescription. International Journal of Environmental Research and Public Health, 16(6), 942. | www.mdpi.com/1660-4601/16/6/942 |
Chapter 5 | 88 | Martínez-González, M. A. et al. (2014). A provegetarian food pattern and reduction in total mortality in the Prevención con Dieta Mediterránea (PREDIMED) study. American Journal of Clinical Nutrition, 100(suppl_1), 320S–8S. | academic.oup.com/ajcn/article-abstract/100/suppl_1/320S/4576429 |
Chapter 5 | 89 | Freeman, A. M. et al. (2017). Trending cardiovascular nutrition controversies. Journal of the American College of Cardiology, 69(9), 1172–87. | www.onlinejacc.org/content/69/9/1172 |
Chapter 5 | 90 | Hernáez, Á. et al. (2014). Olive oil polyphenols enhance high-density lipoprotein function in humans: A randomized controlled trial. Arteriosclerosis, Thrombosis, and Vascular Biology, 34(9), 2115–19. | www.ahajournals.org/doi/10.1161/ATVBAHA.114.303374 |
Chapter 5 | 91 | Schwingshackl, L., Christoph, M. and Hoffmann, G. (2015). Effects of olive oil on markers of inflammation and endothelial function: A systematic review and meta-analysis. Nutrients, 7(9), 7651–75. | www.mdpi.com/2072-6643/7/9/5356 |
Chapter 5 | 92 | Pallazola, V. A. et al. (2019). A clinician’s guide to healthy eating for cardiovascular disease prevention. Mayo Clinic Proceedings: Innovations, quality & outcomes, 3(3), 251–67. | www.sciencedirect.com/science/article/pii/S2542454819300724 |
Chapter 5 | 93 | Arnett, D. K. et al. (2019). 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation, 140(11), e596–e646. | www.ahajournals.org/doi/full/10.1161/CIR.0000000000000678 |
Chapter 5 | 94 | Rogers, K. (2016). Trans fat. Encyclopaedia Britannica. | www.britannica.com/science/trans-fat |
Chapter 5 | 95 | Dhaka, V., Gulia, N., Ahlawat, K. S. and Khatkar, B. S. (2011). Trans fats – Sources, health risks and alternative approach – A review. Journal of Food Science and Technology, 48(5), 534–41. | link.springer.com/article/10.1007/s13197-010-0225-8 |
Chapter 5 | 96 | Takeuchi, H. and Sugano, M. (2017). Industrial trans fatty acid and serum cholesterol: The allowable dietary level. Journal of Lipids, 2017, 9751756. | www.hindawi.com/journals/jl/2017/9751756/abs |
Chapter 5 | 97 | Mensink, R. P. and Katan, M. B. (1990). Effect of dietary trans fatty acids on high-density and low-density lipoprotein cholesterol levels in healthy subjects. New England Journal of Medicine, 323(7), 439–45. | www.nejm.org/doi/full/10.1056/NEJM199008163230703 |
Chapter 5 | 98 | Stampfer, W. C. W. M. J., Manson, J. E., Speizer, G. A. C. F. E., Rosner, B. A. and Hennekens, L. A. S. C. H. (1993). Intake of trans fatty acids and risk of coronary heart disease among women. The Lancet, 341, 581–5. | www.academia.edu/download/49893637/Intake_of_trans_fatty_acids_and_risk_of_20161026-10086-14amaux.pdf |
Chapter 5 | 99 | Hunter, J. E. (2006). Dietary trans fatty acids: Review of recent human studies and food industry responses. Lipids, 41(11), 967–92. | aocs.onlinelibrary.wiley.com/doi/abs/10.1007/s11745-006-5049-y |
Chapter 5 | 100 | Oomen, C. M., Ocké, M. C., Feskens, E. J., van Erp-Baart, M. A. J., Kok, F. J. and Kromhout, D. (2001). Association between trans fatty acid intake and 10-year risk of coronary heart disease in the Zutphen Elderly Study: A prospective population-based study. The Lancet, 357(9258), 746–51. | www.sciencedirect.com/science/article/pii/S0140673600041660 |
Chapter 5 | 101 | Uauy, R. et al. (2009). WHO Scientific Update on trans fatty acids: Summary and conclusions. European Journal of Clinical Nutrition, 63(2), S68–75. | www.nature.com/articles/ejcn200915 |
Chapter 5 | 102 | Mensink, R. P., Zock, P. L., Kester, A. D. and Katan, M. B. (2003). Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. American Journal of Clinical Nutrition, 77(5), 1146–55. | academic.oup.com/ajcn/article-abstract/77/5/1146/4689813 |
Chapter 5 | 103 | Nishida, C. and Uauy, R. (2009). WHO Scientific Update on health consequences of trans fatty acids: Introduction. European Journal of Clinical Nutrition, 63, S1–S4. | www.nature.com/ejcn/journal/v63/n2s/full/ejcn200913a.html |
Chapter 5 | 104 | World Health Organization. Denmark, trans fat ban pioneer: lessons for other countries. WHO Newsroom. 14 May 2018. | www.who.int/news-room/feature-stories/detail/denmark-trans-fat-ban-pioneer-lessons-for-other-countries |
Chapter 5 | 105 | Brouwer, I. A., Wanders, A. J. and Katan, M. B. (2013). Trans fatty acids and cardiovascular health: Research completed? European Journal of Clinical Nutrition, 67(5), 541–7. | www.nature.com/articles/ejcn201343 |
Chapter 5 | 106 | Wu, J., Downs, S., Catterall, E., Bloem, M., Zheng, M., Veerman, L., Barendregt, J. and Thomas, B. (2017). Levels of trans fats in the food supply and population consumption in Australia: An Expert Commentary rapid review brokered by the Sax Institute for The National Heart Foundation of Australia. | www.heartfoundation.org.au/getmedia/e27233c8-73d5-4c37-9416-ad7592af593c/Expert-Commentary-Levels-of-trans-fats-in-the-food-supply-and-consumption-in-Australia.pdf |
Chapter 5 | 107 | Vincent, M. J., Allen, B., Palacios, O. M., Haber, L. T. and Maki, K. C. (2019). Meta-regression analysis of the effects of dietary cholesterol intake on LDL and HDL cholesterol. American Journal of Clinical Nutrition, 109(1), 7–16. | academic.oup.com/ajcn/article-abstract/109/1/7/5266898 |
Chapter 5 | 108 | Rouhani, M. H., Rashidi-Pourfard, N., Salehi-Abargouei, A., Karimi, M. and Haghighatdoost, F. (2018). Effects of egg consumption on blood lipids: A systematic review and meta-analysis of randomized clinical trials. Journal of the American College of Nutrition, 37(2), 99–110. | www.tandfonline.com/doi/abs/10.1080/07315724.2017.1366878 |
Chapter 5 | 109 | Barnard, N. D., Long, M. B., Ferguson, J. M., Flores, R. and Kahleova, H. (2019). Industry funding and cholesterol research: A systematic review. American Journal of Lifestyle Medicine, 1559827619892198. | journals.sagepub.com/doi/abs/10.1177/1559827619892198 |
Chapter 5 | 110 | Hopkins, P. N. (1992). Effects of dietary cholesterol on serum cholesterol: A meta-analysis and review. American Journal of Clinical Nutrition, 55(6), 1060–70. | academic.oup.com/ajcn/article-abstract/55/6/1060/4715430 |
Chapter 5 | 111 | Khalighi Sikaroudi, M., Soltani, S., Kolahdouz‐Mohammadi, R., Clayton, Z. S., Fernandez, M. L., Varse, F. and Shidfar, F. (2020). The responses of different dosages of egg consumption on blood lipid profile: An updated systematic review and meta‐analysis of randomized clinical trials. Journal of Food Biochemistry, e13263. | onlinelibrary.wiley.com/doi/abs/10.1111/jfbc.13263 |
Chapter 5 | 112 | Fielding, C. J., Havel, R. J., Todd, K. M., Yeo, K. E., Schloetter, M. C., Weinberg, V. and Frost, P. H. (1995). Effects of dietary cholesterol and fat saturation on plasma lipoproteins in an ethnically diverse population of healthy young men. Journal of Clinical Investigation, 95(2), 611–18. | www.jci.org/articles/view/117705 |
Chapter 5 | 113 | Carson, J. A. S. et al. (2020). Dietary cholesterol and cardiovascular risk: A science advisory from the American Heart Association. Circulation, 141(3), e39–53. | www.ahajournals.org/doi/abs/10.1161/CIR.0000000000000743 |
Chapter 5 | 114 | Xu, Z., McClure, S. T. and Appel, L. J. (2018). Dietary cholesterol intake and sources among US adults: Results from National Health and Nutrition Examination Surveys (NHANES), 2001–2014. Nutrients, 10(6), 771. | www.mdpi.com/2072-6643/10/6/771 |
Chapter 5 | 115 | Bergeron, N., Chiu, S., Williams, P. T., King, S. M. and Krauss, R. M. (2019). Effects of red meat, white meat, and nonmeat protein sources on atherogenic lipoprotein measures in the context of low compared with high saturated fat intake: A randomized controlled trial. American Journal of Clinical Nutrition, 110(1), 24–33. | academic.oup.com/ajcn/article-abstract/110/1/24/5494812 |
Chapter 5 | 116 | Key, T. J. et al. (2019). Consumption of meat, fish, dairy products, and eggs and risk of ischemic heart disease: A prospective study of 7198 incident cases among 409 885 participants in the Pan-European EPIC Cohort. Circulation, 139(25), 2835–45. | www.ahajournals.org/doi/abs/10.1161/CIRCULATIONAHA.118.038813 |
Chapter 5 | 117 | U.S. Department of Agriculture and U.S. Department of Health and Human Services. (2020). Dietary Guidelines for Americans, 2020–2025. 9th Edition. | www.dietaryguidelines.gov/sites/default/files/2020-12/Dietary_Guidelines_for_Americans_2020-2025.pdf |
Chapter 5 | 118 | Centers for Disease Control and Prevention. (2020). High cholesterol facts. Centers for Disease Control and Prevention, Atlanta. | www.cdc.gov/cholesterol/facts.htm |
Chapter 5 | 119 | Peng, Y. and Wang, Z. (2018). Cardiovascular health status among Australian adults. Clinical Epidemiology, 10, 167. | www.ncbi.nlm.nih.gov/pmc/articles/PMC5789041 |
Chapter 5 | 120 | Flather, M. (2010). Efficacy and safety of more intensive lowering of LDL cholesterol: A meta-analysis of data from 170,000 participants in 26 randomised trials. The Lancet, 376(9753), 1670–81. | ueaeprints.uea.ac.uk/id/eprint/57047 |
Chapter 5 | 121 | Key, T. J. et al. (1999). Mortality in vegetarians and nonvegetarians: Detailed findings from a collaborative analysis of 5 prospective studies. American Journal of Clinical Nutrition, 70(3), 516s–24s. | academic.oup.com/ajcn/article-abstract/70/3/516s/4714974 |
Chapter 5 | 122 | Centers for Disease Control and Prevention, Division for Heart Disease and Stroke Prevention. (2020). Types of stroke. Centers for Disease Control and Prevention, Atlanta. | www.cdc.gov/stroke/types_of_stroke.htm |
Chapter 5 | 123 | American Heart Association. (2017). What is cardiovascular disease? American Heart Association. | www.heart.org/en/health-topics/consumer-healthcare/what-is-cardiovascular-disease |
Chapter 5 | 124 | Chiu, T. H., Chang, H. R., Wang, L. Y., Chang, C. C., Lin, M. N. and Lin, C. L. (2020). Vegetarian diet and incidence of total, ischemic, and hemorrhagic stroke in 2 cohorts in Taiwan. Neurology, 94(11), e1112–21. | n.neurology.org/content/94/11/e1112 |
Chapter 5 | 125 | Pettersen, B. J., Anousheh, R., Fan, J., Jaceldo-Siegl, K. and Fraser, G. E. (2012). Vegetarian diets and blood pressure among white subjects: Results from the Adventist Health Study-2 (AHS-2). Public Health Nutrition, 15(10), 1909–16. | www.cambridge.org/core/journals/public-health-nutrition/article/vegetarian-diets-and-blood-pressure-among-white-subjects-results-from-the-adventist-health-study2-ahs2/428A8F6A59D3433B1A87B7B0D1F3FD28 |
Chapter 5 | 126 | Appleby, P. N., Davey, G. K. and Key, T. J. (2002). Hypertension and blood pressure among meat eaters, fish eaters, vegetarians and vegans in EPIC–Oxford. Public Health Nutrition, 5(5), 645–54. | www.cambridge.org/core/journals/public-health-nutrition/article/hypertension-and-blood-pressure-among-meat-eaters-fish-eaters-vegetarians-and-vegans-in-epicoxford/678E54EF633FD623EF778BE1BA743C6A |
Chapter 5 | 127 | Landi, F. et al. (2018). Body mass index is strongly associated with hypertension: Results from the Longevity Check-up 7+ Study. Nutrients, 10(12), 1976. | www.mdpi.com/2072-6643/10/12/1976 |
Chapter 5 | 128 | Rouse, I., Armstrong, B., Beilin, L. and Vandongen, R. (1983). Blood-pressure-lowering effect of a vegetarian diet: Controlled trial in normotensive subjects. The Lancet, 321(8314–15), 5-10. | www.sciencedirect.com/science/article/pii/S014067368391557X |
Chapter 5 | 129 | Jovanovski, E. et al. (2015). Effect of spinach, a high dietary nitrate source, on arterial stiffness and related hemodynamic measures: A randomized, controlled trial in healthy adults. Clinical Nutrition Research, 4(3), 160–7. | www.ncbi.nlm.nih.gov/pmc/articles/pmc4525132 |
Chapter 5 | 130 | Borgi, L., Curhan, G. C., Willett, W. C., Hu, F. B., Satija, A. and Forman, J. P. (2015). Long-term intake of animal flesh and risk of developing hypertension in three prospective cohort studies. Journal of Hypertension, 33(11), 2231. | www.ncbi.nlm.nih.gov/pmc/articles/PMC4797063 |
Chapter 5 | 131 | Wang, L., Manson, J. E., Buring, J. E. and Sesso, H. D. (2008). Meat intake and the risk of hypertension in middle-aged and older women. Journal of Hypertension, 26(2), 215–22. | journals.lww.com/jhypertension/Fulltext/2008/02000/Meat_intake_and_the_risk_of_hypertension_in.12.aspx |
Chapter 5 | 132 | Miura, K., Greenland, P., Stamler, J., Liu, K., Daviglus, M. L. and Nakagawa, H. (2004). Relation of vegetable, fruit, and meat intake to 7-year blood pressure change in middle-aged men: The Chicago Western Electric Study. American Journal of Epidemiology, 159(6), 572–80. | academic.oup.com/aje/article-abstract/159/6/572/147760 |
Chapter 5 | 133 | Steffen, L. M. et al. (2005). Associations of plant food, dairy product, and meat intakes with 15-y incidence of elevated blood pressure in young black and white adults: The Coronary Artery Risk Development in Young Adults (CARDIA) Study. American Journal of Clinical Nutrition, 82(6), 1169–77. | academic.oup.com/ajcn/article-abstract/82/6/1169/4648772 |
Chapter 5 | 134 | Lelong, H. et al. (2017). Individual and combined effects of dietary factors on risk of incident hypertension: Prospective analysis from the NutriNet-Santé cohort. Hypertension, 70(4), 712–20. | www.ahajournals.org/doi/abs/10.1161/HYPERTENSIONAHA.117.09622 |
Chapter 5 | 135 | Yokoyama, Y. et al. (2014). Vegetarian diets and blood pressure: A meta-analysis. JAMA Internal Medicine, 174(4), 577–87. | jamanetwork.com/journals/jamainternalmedicine/article-abstract/1832195 |
Chapter 5 | 136 | Cook, N. R., Cohen, J., Hebert, P. R., Taylor, J. O. and Hennekens, C. H. (1995). Implications of small reductions in diastolic blood pressure for primary prevention. Archives of Internal Medicine, 155(7), 701–9. | jamanetwork.com/journals/jamainternalmedicine/article-abstract/620326 |
Chapter 5 | 137 | Sacks, F. M. et al. (1995). Rationale and design of the Dietary Approaches to Stop Hypertension trial (DASH): A multicenter controlled-feeding study of dietary patterns to lower blood pressure. Annals of Epidemiology, 5(2), 108–18. | www.sciencedirect.com/science/article/pii/104727979400055X |
Chapter 5 | 138 | Appel, L. J. et al. (1997). A clinical trial of the effects of dietary patterns on blood pressure. New England Journal of Medicine, 336(16), 1117–24. | www.nejm.org/doi/full/10.1056/NEJM199704173361601 |
Chapter 5 | 139 | Berkow, S. E. and Barnard, N. D. (2005). Blood pressure regulation and vegetarian diets. Nutrition Reviews, 63(1), 1–8. | academic.oup.com/nutritionreviews/article-abstract/63/1/1/1921496 |
Chapter 5 | 140 | Haider, L. M., Schwingshackl, L., Hoffmann, G. and Ekmekcioglu, C. (2018). The effect of vegetarian diets on iron status in adults: A systematic review and meta-analysis. Critical Reviews in Food Science and Nutrition, 58(8), 1359–74. | www.tandfonline.com/doi/abs/10.1080/10408398.2016.1259210 |
Chapter 5 | 141 | Johnson-Wimbley, T. D. and Graham, D. Y. (2011). Diagnosis and management of iron deficiency anemia in the 21st century. Therapeutic Advances in Gastroenterology, 4(3), 177–84. | journals.sagepub.com/doi/abs/10.1177/1756283X11398736 |
Chapter 5 | 142 | Hurrell, R. and Egli, I. (2010). Iron bioavailability and dietary reference values. American Journal of Clinical Nutrition, 91(5), 1461S–7S. | academic.oup.com/ajcn/article-abstract/91/5/1461S/4597424 |
Chapter 5 | 143 | Cook, J. D. (1990). Adaptation in iron metabolism. American Journal of Clinical Nutrition, 51(2), 301–8. | academic.oup.com/ajcn/article-abstract/51/2/301/4695161 |
Chapter 5 | 144 | De Valk, B. and Marx, J. J. M. (1999). Iron, atherosclerosis, and ischemic heart disease. Archives of Internal Medicine, 159(14), 1542–8. | jamanetwork.com/journals/jamainternalmedicine/article-abstract/485095 |
Chapter 5 | 145 | Fang, X. et al. (2015). Dietary intake of heme iron and risk of cardiovascular disease: A dose-response meta-analysis of prospective cohort studies. Nutrition, Metabolism and Cardiovascular Diseases, 25(1), 24–35. | www.sciencedirect.com/science/article/pii/S0939475314002889 |
Chapter 5 | 146 | Cross, A. J., Harnly, J. M., Ferrucci, L. M., Risch, A., Mayne, S. T. and Sinha, R. (2012). Developing a heme iron database for meats according to meat type, cooking method and doneness level. Food and Nutrition Sciences, 3(7), 905. | www.ncbi.nlm.nih.gov/pmc/articles/PMC3583546 |
Chapter 5 | 147 | Cronometer: Track your calories, exercise, biometrics and health data. | cronometer.com |
Chapter 5 | 148 | Naghshi, S., Sadeghi, O., Willett, W. C. and Esmaillzadeh, A. (2020). Dietary intake of total, animal, and plant proteins and risk of all cause, cardiovascular, and cancer mortality: Systematic review and dose-response meta-analysis of prospective cohort studies. BMJ, 370, m2412. | www.bmj.com/content/370/bmj.m2412 |
Chapter 5 | 149 | Chen, Z. et al. (2020). Dietary protein intake and all-cause and cause-specific mortality: Results from the Rotterdam Study and a meta-analysis of prospective cohort studies. European Journal of Epidemiology, 35(5), 411–29. | link.springer.com/article/10.1007/s10654-020-00607-6 |
Chapter 5 | 150 | Song, M., Fung, T. T., Hu, F. B., Willett, W. C., Longo, V. D., Chan, A. T. and Giovannucci, E. L. (2016). Association of animal and plant protein intake with all-cause and cause-specific mortality. JAMA Internal Medicine, 176(10), 1453–63. | jamanetwork.com/journals/jamainternalmedicine/article-abstract/2540540 |
Chapter 5 | 151 | Tharrey, M., Mariotti, F., Mashchak, A., Barbillon, P., Delattre, M. and Fraser, G. E. (2018). Patterns of plant and animal protein intake are strongly associated with cardiovascular mortality: the Adventist Health Study-2 cohort. International Journal of Epidemiology, 47(5), 1603–12. | academic.oup.com/ije/article-abstract/47/5/1603/4924399 |
Chapter 5 | 152 | Budhathoki, S. et al. (2019). Association of animal and plant protein intake with all-cause and cause-specific mortality in a Japanese cohort. JAMA Internal Medicine, 179(11), 1509–18. | jamanetwork.com/journals/jamainternalmedicine/article-abstract/2748453 |
Chapter 5 | 153 | Huang, J., Liao, L. M., Weinstein, S. J., Sinha, R., Graubard, B. I. and Albanes, D. (2020). Association between plant and animal protein intake and overall and cause-specific mortality. JAMA Internal Medicine, 180(9), 1173–84. | jamanetwork.com/journals/jamainternalmedicine/article-abstract/2768358 |
Chapter 5 | 154 | Kelemen, L. E., Kushi, L. H., Jacobs Jr, D. R. and Cerhan, J. R. (2005). Associations of dietary protein with disease and mortality in a prospective study of postmenopausal women. American Journal of Epidemiology, 161(3), 239–49. | academic.oup.com/aje/article-abstract/161/3/239/127005 |
Chapter 5 | 155 | Zhang, X. et al. (2020). High-protein diets increase cardiovascular risk by activating macrophage mTOR to suppress mitophagy. Nature Metabolism, 2(1), 110–25. | www.nature.com/articles/s42255-019-0162-4 |
Chapter 5 | 156 | Szeto, Y. T., Kwok, T. C. and Benzie, I. F. (2004). Effects of a long-term vegetarian diet on biomarkers of antioxidant status and cardiovascular disease risk. Nutrition, 20(10), 863–6. | www.sciencedirect.com/science/article/pii/S0899900704001674 |
Chapter 5 | 157 | Rauma, A. L. and Mykkänen, H. (2000). Antioxidant status in vegetarians versus omnivores. Nutrition, 16(2), 111–19. | www.sciencedirect.com/science/article/pii/S0899900799002671 |
Chapter 5 | 158 | Haldar, S., Rowland, I. R., Barnett, Y. A., Bradbury, I., Robson, P. J., Powell, J. and Fletcher, J. (2007). Influence of habitual diet on antioxidant status: A study in a population of vegetarians and omnivores. European Journal of Clinical Nutrition, 61(8), 1011–22. | www.nature.com/articles/1602615 |
Chapter 5 | 159 | Kim, M. K., Cho, S. W. and Park, Y. K. (2012). Long-term vegetarians have low oxidative stress, body fat, and cholesterol levels. Nutrition Research and Practice, 6(2), 155–61. | www.ncbi.nlm.nih.gov/pmc/articles/PMC3349038 |
Chapter 5 | 160 | Waldmann, A., Koschizke, J. W., Leitzmann, C. and Hahn, A. (2005). Dietary intakes and blood concentrations of antioxidant vitamins in German vegans. International Journal for Vitamin and Nutrition Research, 75(1), 28–36. | econtent.hogrefe.com/doi/abs/10.1024/0300-9831.75.1.28 |
Chapter 5 | 161 | Nagyová, A., Kudláčková, M., Grančičová, E. and Magálová, T. (1998). LDL oxidizability and antioxidative status of plasma in vegetarians. Annals of Nutrition and Metabolism, 42(6), 328–32. | www.karger.com/Article/Abstract/12752 |
Chapter 5 | 162 | Leermakers, E. T. et al. (2016). The effects of lutein on cardiometabolic health across the life course: a systematic review and meta-analysis, 2. American Journal of Clinical Nutrition, 103(2), 481–94. | academic.oup.com/ajcn/article-abstract/103/2/481/4564739 |
Chapter 5 | 163 | Schulz, A. J., Mentz, G. B., Sampson, N. R., Dvonch, J. T., Reyes, A. G. and Izumi, B. (2015). Effects of particulate matter and antioxidant dietary intake on blood pressure. American Journal of Public Health, 105(6), 1254–61. | ajph.aphapublications.org/doi/abs/10.2105/AJPH.2014.302176 |
Chapter 5 | 164 | Du, Y., Xu, X., Chu, M., Guo, Y. and Wang, J. (2016). Air particulate matter and cardiovascular disease: The epidemiological, biomedical and clinical evidence. Journal of Thoracic Disease, 8(1), E8. | www.ncbi.nlm.nih.gov/pmc/articles/PMC4740122 |
Chapter 5 | 165 | National Health and Medical Research Council, Australian Government Department of Health and Ageing, New Zealand Ministry of Health. (2006). Nutrient Reference Values for Australia and New Zealand. National Health and Medical Research Council, Canberra. | www.nrv.gov.au |
Chapter 5 | 166 | Fayet-Moore, F., Cassettari, T., Tuck, K., McConnell, A. and Petocz, P. (2018). Dietary fibre intake in Australia. Paper I: Associations with demographic, socio-economic, and anthropometric factors. Nutrients, 10(5), 599. | www.mdpi.com/2072-6643/10/5/599 |
Chapter 5 | 167 | King, D. E., Mainous III, A. G. and Lambourne, C. A. (2012). Trends in dietary fiber intake in the United States, 1999–2008. Journal of the Academy of Nutrition and Dietetics, 112(5), 642–8. | www.sciencedirect.com/science/article/pii/S2212267212001311 |
Chapter 5 | 168 | Liu, L., Wang, S. and Liu, J. (2015). Fiber consumption and all‐cause, cardiovascular, and cancer mortalities: A systematic review and meta‐analysis of cohort studies. Molecular Nutrition & Food Research, 59(1), 139–46. | onlinelibrary.wiley.com/doi/abs/10.1002/mnfr.201400449 |
Chapter 5 | 169 | Hartley, L., May, M. D., Loveman, E., Colquitt, J. L. and Rees, K. (2016). Dietary fibre for the primary prevention of cardiovascular disease. Cochrane Database of Systematic Reviews, (1), CD011472. | www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD011472.pub2 |
Chapter 5 | 170 | Jayalath, V. H. et al. (2014). Effect of dietary pulses on blood pressure: A systematic review and meta-analysis of controlled feeding trials. American Journal of Hypertension, 27(1), 56–64. | academic.oup.com/ajh/article-abstract/27/1/56/142475 |
Chapter 5 | 171 | Grosso, G. et al. (2017). A comprehensive meta-analysis on evidence of Mediterranean diet and cardiovascular disease: Are individual components equal? Critical Reviews in Food Science and Nutrition, 57(15), 3218–32. | www.tandfonline.com/doi/abs/10.1080/10408398.2015.1107021 |
Chapter 5 | 172 | Dinu, M., Abbate, R., Gensini, G. F., Casini, A. and Sofi, F. (2017). Vegetarian, vegan diets and multiple health outcomes: A systematic review with meta-analysis of observational studies. Critical Reviews in Food Science and Nutrition, 57(17), 3640–9. | www.tandfonline.com/doi/abs/10.1080/10408398.2016.1138447 |
Chapter | Reference Number | Content | URL |
---|---|---|---|
Chapter 6 | 1 | World Health Organization. Cancer. WHO Newsroom. 12 September 2018. | https://www.who.int/news-room/fact-sheets/detail/cancer |
Chapter 6 | 2 | Anand, P. et al. (2008). Cancer is a preventable disease that requires major lifestyle changes. Pharmaceutical Research, 25(9), 2097–116. | link.springer.com/article/10.1007/s11095-008-9661-9 |
Chapter 6 | 3 | Willett, W. C. (2000). Diet and cancer. The Oncologist, 5(5), 393–404. | www.direct-ms.org/wp-content/uploads/2018/01/Willett-diet-and-cancer.pdf |
Chapter 6 | 4 | World Cancer Research Fund and American Institute for Cancer Research. (2018). Diet, Nutrition, Physical Activity and Cancer: A Global Perspective: A summary of the Third Expert Report. | www.wcrf.org/sites/default/files/Summary-of-Third-Expert-Report-2018.pdf |
Chapter 6 | 5 | Australian Institute of Health and Welfare. (2018). Cancer in Australia: Actual incidence data from 1982 to 2013 and mortality data from 1982 to 2014 with projections to 2017. Asia‐Pacific Journal of Clinical Oncology, 14(1), 5–15. | onlinelibrary.wiley.com/doi/abs/10.1111/ajco.12761 |
Chapter 6 | 6 | Cancer Australia. Diet. Cancer Australia, Australian Government, Canberra. | canceraustralia.gov.au/publications-and-resources/position-statements/lifestyle-risk-factors-and-primary-prevention-cancer/lifestyle-risk-factors/diet |
Chapter 6 | 7 | Whitnall, T. and Pitts, N. (2020). Meat Consumption: Analysis of global meat consumption trends. Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES), Australian Government, Canberra. | www.agriculture.gov.au/abares/research-topics/agricultural-commodities/mar-2019/meat-consumption |
Chapter 6 | 8 | WHO Team. Cancer: Carcinogenicity of the consumption of red meat and processed meat. WHO Newsroom. 26 October 2015. | www.who.int/news-room/q-a-detail/cancer-carcinogenicity-of-the-consumption-of-red-meat-and-processed-meat |
Chapter 6 | 9 | IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. (2018). Red meat and processed meat: Volume 114 – IARC Monographs on the Evaluate. World Health Organization, Geneva; International Agency for Research on Cancer, Lyon. | monographs.iarc.fr/wp-content/uploads/2018/06/mono114.pdf |
Chapter 6 | 10 | World Cancer Research Fund and American Institute for Cancer Research. (2018). Limit red and processed meat. World Cancer Research Fund International. | www.wcrf.org/dietandcancer/recommendations/limit-red-processed-meat |
Chapter 6 | 11 | Singh, P. N. and Fraser, G. E. (1998). Dietary risk factors for colon cancer in a low-risk population. American Journal of Epidemiology, 148(8), 761–74. | academic.oup.com/aje/article-abstract/148/8/761/69260 |
Chapter 6 | 12 | Chan, D. S., Lau, R., Aune, D., Vieira, R., Greenwood, D. C., Kampman, E. and Norat, T. (2011). Red and processed meat and colorectal cancer incidence: Meta-analysis of prospective studies. PLOS One, 6(6), e20456. | journals.plos.org/plosone/article?id=10.1371/journal.pone.0020456 |
Chapter 6 | 13 | Oba, S. et al. (2006). The relationship between the consumption of meat, fat, and coffee and the risk of colon cancer: A prospective study in Japan. Cancer Letters, 244(2), 260–7. | www.sciencedirect.com/science/article/pii/S0304383506000097 |
Chapter 6 | 14 | Norat, T. et al. (2005). Meat, fish, and colorectal cancer risk: The European Prospective Investigation into Cancer and Nutrition. Journal of the National Cancer Institute, 97(12), 906–16. | academic.oup.com/jnci/article-abstract/97/12/906/2544064 |
Chapter 6 | 15 | English, D. R., MacInnis, R. J., Hodge, A. M., Hopper, J. L., Haydon, A. M. and Giles, G. G. (2004). Red meat, chicken, and fish consumption and risk of colorectal cancer. Cancer Epidemiology and Prevention Biomarkers, 13(9), 1509–14. | cebp.aacrjournals.org/content/13/9/1509 |
Chapter 6 | 16 | Larsson, S. C., Rafter, J., Holmberg, L., Bergkvist, L. and Wolk, A. (2005). Red meat consumption and risk of cancers of the proximal colon, distal colon and rectum: The Swedish Mammography Cohort. International Journal of Cancer, 113(5), 829–34. | onlinelibrary.wiley.com/doi/abs/10.1002/ijc.20658 |
Chapter 6 | 17 | Larsson, S. C. and Orsini, N. (2014). Red meat and processed meat consumption and all-cause mortality: A meta-analysis. American Journal of Epidemiology, 179(3), 282–9. | academic.oup.com/aje/article-abstract/179/3/282/103471 |
Chapter 6 | 18 | Zheng, Y. et al. (2019). Association of changes in red meat consumption with total and cause specific mortality among US women and men: Two prospective cohort studies. BMJ, 365, l2110. | www.bmj.com/content/365/bmj.l2110 |
Chapter 6 | 19 | Cancer Council. Types of cancer: Bowel cancer. Cancer Council Australia. | www.cancer.org.au/cancer-information/types-of-cancer/bowel-cancer |
Chapter 6 | 20 | Centers for Disease Control and Prevention. Colorectal cancer statistics. Centers for Disease Control and Prevention, Atlanta. | www.cdc.gov/cancer/colorectal/statistics/index.htm |
Chapter 6 | 21 | Bastide, N. M., Pierre, F. H. and Corpet, D. E. (2011). Heme iron from meat and risk of colorectal cancer: A meta-analysis and a review of the mechanisms involved. Cancer Prevention Research, 4(2), 177–84. | cancerpreventionresearch.aacrjournals.org/content/4/2/177 |
Chapter 6 | 22 | Fonseca-Nunes, A., Jakszyn, P. and Agudo, A. (2014). Iron and cancer risk – A systematic review and meta-analysis of the epidemiological evidence. Cancer Epidemiology and Prevention Biomarkers, 23(1), 12–31. | cebp.aacrjournals.org/content/23/1/12 |
Chapter 6 | 23 | Joosen, A. M. et al. (2009). Effect of processed and red meat on endogenous nitrosation and DNA damage. Carcinogenesis, 30(8), 1402–7. | academic.oup.com/carcin/article-abstract/30/8/1402/2476991 |
Chapter 6 | 24 | IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. (2010). Ingested nitrate and nitrite, and cyanobacterial peptide toxins. International Agency for Research on Cancer, Lyon. (IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 94.) | www.ncbi.nlm.nih.gov/books/NBK326544 |
Chapter 6 | 25 | Tannenbaum, S. R. (1989). Preventive action of vitamin C on nitrosamine formation. International Journal for Vitamin and Nutrition Research, Supplement, 30, 109–13. | europepmc.org/article/med/2507690 |
Chapter 6 | 26 | Ito, N. and Hirose, M. (1989). Antioxidants – Carcinogenic and chemopreventive properties. Advances in Cancer Research, 53, 247–302. | www.sciencedirect.com/science/article/pii/S0065230X08602833 |
Chapter 6 | 27 | Hord, N. G., Tang, Y. and Bryan, N. S. (2009). Food sources of nitrates and nitrites: The physiologic context for potential health benefits. American Journal of Clinical Nutrition, 90(1), 1–10. | academic.oup.com/ajcn/article-abstract/90/1/1/4596750 |
Chapter 6 | 28 | Lu, W., Chen, H., Niu, Y., Wu, H., Xia, D. and Wu, Y. (2016). Dairy products intake and cancer mortality risk: A meta-analysis of 11 population-based cohort studies. Nutrition Journal, 15(1), 91. | link.springer.com/article/10.1186/s12937-016-0210-9 |
Chapter 6 | 29 | Aune, D. et al. (2015). Dairy products, calcium, and prostate cancer risk: A systematic review and meta-analysis of cohort studies. American Journal of Clinical Nutrition, 101(1), 87–117. | academic.oup.com/ajcn/article-abstract/101/1/87/4564339 |
Chapter 6 | 30 | Harrison, S. et al. (2017). Does milk intake promote prostate cancer initiation or progression via effects on insulin-like growth factors (IGFs)? A systematic review and meta-analysis. Cancer Causes & Control, 28(6), 497–528. | link.springer.com/article/10.1007/s10552-017-0883-1 |
Chapter 6 | 31 | Jeyaraman, M. M. et al. (2019). Dairy product consumption and development of cancer: An overview of reviews. BMJ Open, 9(1), e023625. | bmjopen.bmj.com/content/9/1/e023625 |
Chapter 6 | 32 | World Cancer Research Fund and American Institute for Cancer Research. (2018). Continuous Update Project Expert Report 2018. Meat, fish and dairy products and the risk of cancer. | www.wcrf.org/sites/default/files/Meat-Fish-and-Dairy-products.pdf |
Chapter 6 | 33 | Philippou, A. and Armakolas, A. (2013). Evidence for the possible biological significance of the IGF-1 gene alternative splicing in prostate cancer. Frontiers in Endocrinology, 4, 31. | www.frontiersin.org/articles/10.3389/fendo.2013.00031 |
Chapter 6 | 34 | Ma, J., Giovannucci, E., Pollak, M., Chan, J. M., Gaziano, J. M., Willett, W. and Stampfer, M. J. (2001). Milk intake, circulating levels of insulin-like growth factor-I, and risk of colorectal cancer in men. Journal of the National Cancer Institute, 93(17), 1330–6. | academic.oup.com/jnci/article-abstract/93/17/1330/2519487 |
Chapter 6 | 35 | Travis, R. C. et al. (2016). A meta-analysis of individual participant data reveals an association between circulating levels of IGF-I and prostate cancer risk. Cancer Research, 76(8), 2288–2300. | cancerres.aacrjournals.org/content/76/8/2288 |
Chapter 6 | 36 | Qin, L. Q., He, K. and Xu, J. Y. (2009). Milk consumption and circulating insulin-like growth factor-I level: A systematic literature review. International Journal of Food Sciences and Nutrition, 60(sup7), 330–40. | www.tandfonline.com/doi/abs/10.1080/09637480903150114 |
Chapter 6 | 37 | Allen, N. E., Appleby, P. N., Davey, G. K. and Key, T. J. (2000). Hormones and diet: Low insulin-like growth factor-I but normal bioavailable androgens in vegan men. British Journal of Cancer, 83(1), 95–7. | www.nature.com/articles/6691152 |
Chapter 6 | 38 | Penso, L., Touvier, M., Deschasaux, M., Hercberg, S., Ezzedine, K. and Sbidian, E. (2020). Association between adult acne and dietary behaviors: Findings from the NutriNet-Santé Prospective Cohort Study. JAMA Dermatology,156(8), 854–62. | jamanetwork.com/journals/jamadermatology/article-abstract/2767075 |
Chapter 6 | 39 | Ben‐Amitai, D. and Laron, Z. (2011). Effect of insulin‐like growth factor‐1 deficiency or administration on the occurrence of acne. Journal of the European Academy of Dermatology and Venereology, 25(8), 950–4. | onlinelibrary.wiley.com/doi/abs/10.1111/j.1468-3083.2010.03896.x |
Chapter 6 | 40 | World Cancer Research Fund and American Institute for Cancer Research. (2018). Colorectal cancer. World Cancer Research Fund International. | www.wcrf.org/dietandcancer/colorectal-cancer |
Chapter 6 | 41 | World Cancer Research Fund and American Institute for Cancer Research. (2018). Breast cancer. World Cancer Research Fund International. | www.wcrf.org/dietandcancer/breast-cancer |
Chapter 6 | 42 | Yang, W. et al. (2018). Calcium intake and risk of colorectal cancer according to expression status of calcium-sensing receptor (CASR). Gut, 67(8), 1475–83. | gut.bmj.com/content/67/8/1475 |
Chapter 6 | 43 | Willett, W. C. and Ludwig, D. S. (2020). Milk and health. New England Journal of Medicine, 382(7), 644–54. | www.nejm.org/doi/full/10.1056/NEJMra1903547 |
Chapter 6 | 44 | The Nutrition Source. (2017). PURE study makes headlines, but the conclusions are misleading. Harvard T.H. Chan School of Public Health. | www.hsph.harvard.edu/nutritionsource/2017/09/08/pure-study-makes-headlines-but-the-conclusions-are-misleading |
Chapter 6 | 45 | Pettifor, J. M. (2014). Calcium and vitamin D metabolism in children in developing countries. Annals of Nutrition and Metabolism, 64(Suppl. 2), 15–22. | www.karger.com/Article/Fulltext/365124 |
Chapter 6 | 46 | Dinu, M., Abbate, R., Gensini, G. F., Casini, A. and Sofi, F. (2017). Vegetarian, vegan diets and multiple health outcomes: A systematic review with meta-analysis of observational studies. Critical Reviews in Food Science and Nutrition, 57(17), 3640–9. | www.tandfonline.com/doi/abs/10.1080/10408398.2016.1138447 |
Chapter 6 | 47 | Lomer, M. C., Parkes, G. C. and Sanderson, J. D. (2008). Lactose intolerance in clinical practice – Myths and realities. Alimentary Pharmacology & Therapeutics, 27(2), 93–103. | onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2036.2007.03557.x |
Chapter 6 | 48 | Applegate, C. C., Rowles, J. L., Ranard, K. M., Jeon, S. and Erdman, J. W. (2018). Soy consumption and the risk of prostate cancer: An updated systematic review and meta-analysis. Nutrients, 10(1), 40. | www.mdpi.com/2072-6643/10/1/40 |
Chapter 6 | 49 | Tantamango-Bartley, Y. et al. (2016). Are strict vegetarians protected against prostate cancer? American Journal of Clinical Nutrition, 103(1), 153–60. | academic.oup.com/ajcn/article-abstract/103/1/153/4569296 |
Chapter 6 | 50 | Shin, S. et al. (2018). Dietary patterns and prostate cancer risk in Japanese: The Japan Public Health Center-based Prospective Study (JPHC Study). Cancer Causes & Control, 29(6), 589–600. | pubmed.ncbi.nlm.nih.gov/29671180 |
Chapter 6 | 51 | Li, N. et al. (2020). Soy and isoflavone consumption and multiple health outcomes: Umbrella review of systematic reviews and meta‐analyses of observational studies and randomized trials in humans. Molecular Nutrition & Food Research, 64(4), 1900751. | onlinelibrary.wiley.com/doi/abs/10.1002/mnfr.201900751 |
Chapter 6 | 52 | Lu, D. et al. (2017). Meta-analysis of soy consumption and gastrointestinal cancer risk. Scientific Reports, 7(1), 1–14. | www.nature.com/articles/s41598-017-03692-y |
Chapter 6 | 53 | Messina, M. (2016). Impact of soy foods on the development of breast cancer and the prognosis of breast cancer patients. Complementary Medicine Research, 23(2), 75–80. | www.karger.com/Article/Abstract/444735 |
Chapter 6 | 54 | Trock, B. J., Hilakivi-Clarke, L. and Clarke, R. (2006). Meta-analysis of soy intake and breast cancer risk. Journal of the National Cancer Institute, 98(7), 459–71. | academic.oup.com/jnci/article-abstract/98/7/459/2522023 |
Chapter 6 | 55 | National Cancer Control Policy. (2013). Position statement – Soy, phyto-oestrogens and cancer prevention. Cancer Council Australia. | wiki.cancer.org.au/policy/Position_statement_-_Soy,_phyto-oestrogens_and_cancer_prevention |
Chapter 6 | 56 | American Cancer Society. Soy and cancer risk: Our expert’s advice. American Cancer Society, 29 April 2019. | www.cancer.org/latest-news/soy-and-cancer-risk-our-experts-advice.html |
Chapter 6 | 57 | Richman, E. L., Kenfield, S. A., Stampfer, M. J., Giovannucci, E. L. and Chan, J. M. (2011). Egg, red meat, and poultry intake and risk of lethal prostate cancer in the prostate-specific antigen-era: Incidence and survival. Cancer Prevention Research, 4(12), 2110-2121. | cancerpreventionresearch.aacrjournals.org/content/4/12/2110 |
Chapter 6 | 58 | Snowdon, D. A., Phillips, R. L. and Choi, W. (1984). Diet, obesity, and risk of fatal prostate cancer. American Journal of Epidemiology, 120(2), 244–50. | academic.oup.com/aje/article-abstract/120/2/244/124466 |
Chapter 6 | 59 | Tse, G. and Eslick, G. D. (2014). Egg consumption and risk of GI neoplasms: Dose-response meta-analysis and systematic review. European Journal of Nutrition, 53(7), 1581–90. | link.springer.com/content/pdf/10.1007/s00394-014-0664-5.pdf |
Chapter 6 | 60 | World Cancer Research Fund. Do eggs increase risk of prostate cancer? World Cancer Research Fund UK. 30 September 2011. | www.wcrf-uk.org/uk/blog/articles/2011/09/do-eggs-increase-risk-prostate-cancer |
Chapter 6 | 61 | Orlich, M. J et al. (2013). Vegetarian dietary patterns and mortality in Adventist Health Study 2. JAMA Internal Medicine, 173(13), 1230–8. | jamanetwork.com/journals/jamainternalmedicine/article-abstract/1710093 |
Chapter 6 | 62 | Willcox, D. C., Scapagnini, G. and Willcox, B. J. (2014). Healthy aging diets other than the Mediterranean: A focus on the Okinawan diet. Mechanisms of Ageing and Development, 136, 148–62. | www.sciencedirect.com/science/article/pii/S0047637414000037 |
Chapter 6 | 63 | Blue Zones. Food Guidelines. Blue Zones. | www.bluezones.com/recipes/food-guidelines |
Chapter 6 | 64 | Nguyen, T. T., Ung, T. T., Kim, N. H. and Jung, Y. D. (2018). Role of bile acids in colon carcinogenesis. World Journal of Clinical Cases, 6(13), 577–88. | www.ncbi.nlm.nih.gov/pmc/articles/PMC6232560/ |
Chapter 6 | 65 | David, L. A. et al. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505(7484), 559–63. | www.nature.com/articles/nature12820 |
Chapter 6 | 66 | O’Keefe, S. J. et al. (2015). Fat, fibre and cancer risk in African Americans and rural Africans. Nature Communications, 6(1), 1–14. | www.nature.com/articles/ncomms7342 |
Chapter 6 | 67 | Vipperla, K. and O’Keefe, S. J. (2016). Diet, microbiota, and dysbiosis: A ‘recipe’ for colorectal cancer. Food & Function, 7(4), 1731–40. | pubs.rsc.org/lv/content/articlehtml/2016/fo/c5fo01276g |
Chapter 6 | 68 | Zeng, H., Umar, S., Rust, B., Lazarova, D. and Bordonaro, M. (2019). Secondary bile acids and short chain fatty acids in the colon: A focus on colonic microbiome, cell proliferation, inflammation, and cancer. International Journal of Molecular Sciences, 20(5), 1214. | www.mdpi.com/1422-0067/20/5/1214 |
Chapter 6 | 69 | Baraldi, L. G., Steele, E. M., Canella, D. S. and Monteiro, C. A. (2018). Consumption of ultra-processed foods and associated sociodemographic factors in the USA between 2007 and 2012: Evidence from a nationally representative cross-sectional study. BMJ Open, 8(3), e020574. | bmjopen.bmj.com/content/8/3/e020574 |
Chapter 6 | 70 | Fiolet, T. et al. (2018). Consumption of ultra-processed foods and cancer risk: Results from NutriNet-Santé prospective cohort. BMJ, 360, k322. | www.bmj.com/content/360/bmj.k322 |
Chapter 6 | 71 | World Cancer Research Fund and American Institute for Cancer Research. (2018). Continuous Update Project Expert Report 2018. Other dietary exposures and the risk of cancer. | www.wcrf.org/sites/default/files/Other-dietary-exposures.pdf |
Chapter 6 | 72 | Fardet A. (2016). Minimally processed foods are more satiating and less hyperglycemic than ultra-processed foods: A preliminary study with 98 ready-to-eat foods. Food & Function, 7(5), 2338–46. | pubs.rsc.org/en/content/articlehtml/2016/fo/c6fo00107f |
Chapter 6 | 73 | Rico-Campà, A., Martínez-González, M. A., Alvarez-Alvarez, I., de Deus Mendonça, R., de la Fuente-Arrillaga, C., Gómez-Donoso, C. and Bes-Rastrollo, M. (2019). Association between consumption of ultra-processed foods and all cause mortality: SUN Prospective Cohort Study. BMJ, 365, l1949. | www.bmj.com/content/365/bmj.l1949 |
Chapter 6 | 74 | D’Elia, L., Rossi, G., Ippolito, R., Cappuccio, F. P. and Strazzullo, P. (2012). Habitual salt intake and risk of gastric cancer: A meta-analysis of prospective studies. Clinical Nutrition, 31(4), 489–98. | www.sciencedirect.com/science/article/pii/S0261561412000052 |
Chapter 6 | 75 | Ge, S., Feng, X., Shen, L., Wei, Z., Zhu, Q. and Sun, J. (2012). Association between habitual dietary salt intake and risk of gastric cancer: A systematic review of observational studies. Gastroenterology Research and Practice, 2012. | www.hindawi.com/journals/grp/2012/808120 |
Chapter 6 | 76 | World Cancer Research Fund and American Institute for Cancer Research. (2018). Stomach cancer. World Cancer Research Fund International. | www.wcrf.org/dietandcancer/stomach-cancer |
Chapter 6 | 77 | World Cancer Research Fund and American Institute for Cancer Research. (2018). Continuous Update Project Expert Report 2018. Preservation and processing of foods and the risk of cancer. | www.wcrf.org/sites/default/files/Preservation-and-processing-of-foods.pdf |
Chapter 6 | 78 | Wang, X. Q., Terry, P. D. and Yan, H. (2009). Review of salt consumption and stomach cancer risk: Epidemiological and biological evidence. World Journal of Gastroenterology, 15(18), 2204–13. | www.ncbi.nlm.nih.gov/pmc/articles/PMC2682234 |
Chapter 6 | 79 | Wroblewski, L. E., Peek, R. M., Jr and Wilson, K. T. (2010). Helicobacter pylori and gastric cancer: Factors that modulate disease risk. Clinical Microbiology Reviews, 23(4), 713–39. | cmr.asm.org/content/23/4/713 |
Chapter 6 | 80 | Naylor, G. M. et al. (2006). Why does Japan have a high incidence of gastric cancer? Comparison of gastritis between UK and Japanese patients. Gut, 55(11), 1545–52. | gut.bmj.com/content/55/11/1545 |
Chapter 6 | 81 | Land, M. A., Neal, B. C., Johnson, C., Nowson, C. A., Margerison, C. and Petersen, K. S. (2018). Salt consumption by Australian adults: A systematic review and meta‐analysis. Medical Journal of Australia, 208(2), 75–81. | onlinelibrary.wiley.com/doi/abs/10.5694/mja17.00394 |
Chapter 6 | 82 | Australian Government National Health and Medical Research Council and New Zealand Ministry of Health. (2017). Sodium. Nutrient Reference Values for Australia and New Zealand. | www.nrv.gov.au/nutrients/sodium |
Chapter 6 | 83 | Food Standards Australia New Zealand. (2015). How much sodium do Australians eat? FSANZ. | www.foodstandards.gov.au/consumer/nutrition/salthowmuch/Pages/howmuchsaltareweeating/howmuchsaltandsodium4551.aspx |
Chapter 6 | 84 | World Cancer Research Fund and American Institute for Cancer Research. (2018). Continuous Update Project Expert Report 2018. Alcoholic drinks and the risk of cancer. | www.wcrf.org/sites/default/files/Alcoholic-Drinks.pdf |
Chapter 6 | 85 | Seitz, H. K. and Stickel, F. (2007). Molecular mechanisms of alcohol-mediated carcinogenesis. Nature Reviews Cancer, 7(8), 599–612. | www.nature.com/articles/nrc2191 |
Chapter 6 | 86 | Albano, E. (2006). Alcohol, oxidative stress and free radical damage. Proceedings of the Nutrition Society, 65(3), 278–90. | www.cambridge.org/core/journals/proceedings-of-the-nutrition-society/article/alcohol-oxidative-stress-and-free-radical-damage/10355F6146443B7E3225D2590BA8967B |
Chapter 6 | 87 | Singletary, K. W. and Gapstur, S. M. (2001). Alcohol and breast cancer: Review of epidemiologic and experimental evidence and potential mechanisms. JAMA, 286(17), 2143–51. | jamanetwork.com/journals/jama/article-abstract/194343 |
Chapter 6 | 88 | Kong, S. Y. et al. (2016). Serum endotoxins and flagellin and risk of colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Cancer Epidemiology, Biomarkers & Prevention, 25(2), 291–301. | pubmed.ncbi.nlm.nih.gov/26823475 |
Chapter 6 | 89 | Fedirko, V. et al. (2017). Exposure to bacterial products lipopolysaccharide and flagellin and hepatocellular carcinoma: A nested case-control study. BMC Medicine, 15(1), 72. | link.springer.com/article/10.1186/s12916-017-0830-8 |
Chapter 6 | 90 | World Cancer Research Fund and American Institute for Cancer Research. (2018). Continuous Update Project Expert Report 2018. Wholegrains, vegetables and fruit and the risk of cancer. | www.wcrf.org/sites/default/files/Wholegrains-veg-and-fruit.pdf |
Chapter 6 | 91 | Peters, U. et al. (2003). Dietary fibre and colorectal adenoma in a colorectal cancer early detection programme. The Lancet, 361(9368), 1491–5. | www.sciencedirect.com/science/article/pii/S014067360313173X |
Chapter 6 | 92 | Aune, D., Chan, D. S., Lau, R., Vieira, R., Greenwood, D. C., Kampman, E. and Norat, T. (2011). Dietary fibre, whole grains, and risk of colorectal cancer: Systematic review and dose-response meta-analysis of prospective studies. BMJ, 343, d6617. | www.bmj.com/content/343/bmj.d6617 |
Chapter 6 | 93 | World Cancer Research Fund and American Institute for Cancer Research. (2018). Eat wholegrains, vegetables, fruit & beans. WCRF. | www.wcrf.org/dietandcancer/recommendations/wholegrains-veg-fruit-beans |
Chapter 6 | 94 | Slavin, J. L., Jacobs, D. and Marquart, L. (2000). Grain processing and nutrition. Critical Reviews in Food Science and Nutrition, 40(4), 309–26. | www.tandfonline.com/doi/abs/10.1080/10408690091189176 |
Chapter 6 | 95 | Reynolds, A., Mann, J., Cummings, J., Winter, N., Mete, E. and Te Morenga, L. (2019). Carbohydrate quality and human health: A series of systematic reviews and meta-analyses. The Lancet, 393(10170), 434–45. | www.sciencedirect.com/science/article/pii/S0140673618318099 |
Chapter 6 | 96 | Rock, C. L. et al. (2020). American Cancer Society guideline for diet and physical activity for cancer prevention. CA: A Cancer Journal for Clinicians, 70(4), 245–71. | acsjournals.onlinelibrary.wiley.com/doi/full/10.3322/caac.21591 |
Chapter 6 | 97 | Young, G. P., Hu, Y., Le Leu, R. K. and Nyskohus, L. (2005). Dietary fibre and colorectal cancer: A model for environment–gene interactions. Molecular Nutrition & Food Research, 49(6), 571–84. | www.researchgate.net/publication/7872956_Dietary_fibre_and_colorectal_cancer_A_model_for_environment_-_Gene_interactions |
Chapter 6 | 98 | Segain, J. P. et al. (2000). Butyrate inhibits inflammatory responses through NFκB inhibition: Implications for Crohn’s disease. Gut, 47(3), 397–403. | gut.bmj.com/content/47/3/397 |
Chapter 6 | 99 | Wu, X., Wu, Y., He, L., Wu, L., Wang, X. and Liu, Z. (2018). Effects of the intestinal microbial metabolite butyrate on the development of colorectal cancer. Journal of Cancer, 9(14), 2510. | www.ncbi.nlm.nih.gov/pmc/articles/PMC6036887 |
Chapter 6 | 100 | Ocvirk, S. and O’Keefe, S. J. (2017). Influence of bile acids on colorectal cancer risk: Potential mechanisms mediated by diet-gut microbiota interactions. Current Nutrition Reports, 6(4), 315–22. | link.springer.com/article/10.1007/s13668-017-0219-5 |
Chapter 6 | 101 | Burkitt, D. P. (1993). Epidemiology of cancer of the colon and rectum. Diseases of the Colon & Rectum, 36(11), 1071–82. | link.springer.com/content/pdf/10.1007/BF02047303.pdf |
Chapter 6 | 102 | O’Keefe, S. J. (2019). The association between dietary fibre deficiency and high-income lifestyle-associated diseases: Burkitt’s hypothesis revisited. The Lancet Gastroenterology & Hepatology, 4(12), 984–96. | www.sciencedirect.com/science/article/pii/S2468125319302572 |
Chapter 6 | 103 | Campbell, T. C. and Junshi, C. (1994). Diet and chronic degenerative diseases: Perspectives from China. American Journal of Clinical Nutrition, 59(5), 1153S–61S. | academic.oup.com/ajcn/article-abstract/59/5/1153S/4732577 |
Chapter 6 | 104 | Campbell, T. C., Parpia, B. and Chen, J. (1998). Diet, lifestyle, and the etiology of coronary artery disease: The Cornell China study. American Journal of Cardiology, 82(10), 18–21. | www.sciencedirect.com/science/article/pii/S0002914998007188 |
Chapter 6 | 105 | Tantamango-Bartley, Y., Jaceldo-Siegl, K., Fan, J. and Fraser, G. (2013). Vegetarian diets and the incidence of cancer in a low-risk population. Cancer Epidemiology and Prevention Biomarkers, 22(2), 286–94. | cebp.aacrjournals.org/content/22/2/286 |
Chapter 6 | 106 | Key, T. J., Appleby, P. N., Spencer, E. A., Travis, R. C., Allen, N. E., Thorogood, M. and Mann, J. I. (2009). Cancer incidence in British vegetarians. British Journal of Cancer, 101(1), 192–7. | www.nature.com/articles/6605098 |
Chapter 6 | 107 | Appleby, P. N., Crowe, F. L., Bradbury, K. E., Travis, R. C. and Key, T. J. (2016). Mortality in vegetarians and comparable nonvegetarians in the United Kingdom. American Journal of Clinical Nutrition, 103(1), 218–30. | academic.oup.com/ajcn/article-abstract/103/1/218/4569305 |
Chapter 6 | 108 | World Cancer Research Fund. New research shows vegan diets could lower prostate cancer risk. World Cancer Research Fund UK. 3 March 2016. | www.wcrf-uk.org/uk/media-centre/press-releases/new-research-shows-vegan-diets-could-lower-prostate-cancer-risk |
Chapter 6 | 109 | de Lorgeril, M., Salen, P., Martin, J. L., Monjaud, I., Boucher, P. and Mamelle, N. (1998). Mediterranean dietary pattern in a randomized trial: Prolonged survival and possible reduced cancer rate. Archives of Internal Medicine, 158(11), 1181–7 | jamanetwork.com/journals/jamainternalmedicine/article-abstract/206745 |
Chapter 6 | 110 | Schwingshackl, L., Schwedhelm, C., Galbete, C. and Hoffmann, G. (2017). Adherence to Mediterranean diet and risk of cancer: An updated systematic review and meta-analysis. Nutrients, 9(10), 1063. | www.mdpi.com/2072-6643/9/10/1063 |
Chapter 6 | 111 | Toledo, E. et al. (2015). Mediterranean diet and invasive breast cancer risk among women at high cardiovascular risk in the PREDIMED Trial: A randomized clinical trial. JAMA Internal Medicine, 175(11), 1752–60. | jamanetwork.com/journals/jamainternalmedicine/article-abstract/2434738 |
Chapter 6 | 112 | World Cancer Research Fund and American Institute for Cancer Research. (2018). Continuous Update Project Expert Report 2018. Non-alcoholic drinks and the risk of cancer. | www.wcrf.org/sites/default/files/Non-alcoholic-drinks.pdf |
Chapter 6 | 113 | Salomone, F., Galvano, F. and Li Volti, G. (2017). Molecular bases underlying the hepatoprotective effects of coffee. Nutrients, 9(1), 85. | www.mdpi.com/2072-6643/9/1/85 |
Chapter 6 | 114 | Sagara, Y., Miyata, Y., Nomata, K., Hayashi, T. and Kanetake, H. (2010). Green tea polyphenol suppresses tumor invasion and angiogenesis in N-butyl-(-4-hydroxybutyl) nitrosamine-induced bladder cancer. Cancer Epidemiology, 34(3), 350–4. | www.sciencedirect.com/science/article/pii/S1877782110000342 |
Chapter 6 | 115 | Huang, Y., Xiao, D., Burton-Freeman, B. M. and Edirisinghe, I. (2016). Chemical changes of bioactive phytochemicals during thermal processing. In Elsevier, Reference Module in Food Science. | www.sciencedirect.com/science/article/pii/B9780081005965030559 |
Chapter 6 | 116 | World Cancer Research Fund and American Institute for Cancer Research. (2018). Do not use supplements for cancer prevention. World Cancer Research Fund International. | www.wcrf.org/dietandcancer/recommendations/dont-rely-supplements |
Chapter 6 | 117 | Baudry, J. et al. (2018). Association of frequency of organic food consumption with cancer risk: Findings from the NutriNet-Santé Prospective Cohort Study. JAMA Internal Medicine, 178(12), 1597–606. | jamanetwork.com/journals/jamainternalmedicine/article-abstract/2707948 |
Chapter 6 | 118 | Bradbury, K. E. et al. (2014). Organic food consumption and the incidence of cancer in a large prospective study of women in the United Kingdom. British Journal of Cancer, 110(9), 2321–6. | www.nature.com/articles/bjc2014148 |
Chapter 6 | 119 | Vigar, V., Myers, S., Oliver, C., Arellano, J., Robinson, S. and Leifert, C. (2020). A systematic review of organic versus conventional food consumption: Is there a measurable benefit on human health? Nutrients, 12(1), 7. | www.mdpi.com/2072-6643/12/1/7 |
Chapter 6 | 120 | International Agency for Research on Cancer; World Health Organization. IARC Monographs Volume 112: Evaluation of five organophosphate insecticides and herbicides. International Agency for Research on Cancer, Lyon; World Health Organization, Geneva. | www.iarc.fr/wp-content/uploads/2018/07/MonographVolume112-1.pdf |
Chapter 6 | 121 | Barański, M. et al. (2014). Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: A systematic literature review and meta-analyses. British Journal of Nutrition, 112(5), 794–811. | www.cambridge.org/core/journals/british-journal-of-nutrition/article/higher-antioxidant-and-lower-cadmium-concentrations-and-lower-incidence-of-pesticide-residues-in-organically-grown-crops-a-systematic-literature-review-and-metaanalyses/33F09637EAE6C4ED119E0C4BFFE2D5B1 |
Chapter 6 | 122 | Hemler, E. C., Chavarro, J. E. and Hu, F. B. (2018). Organic foods for cancer prevention – Worth the investment? JAMA Internal Medicine, 178(12), 1606–7. | jamanetwork.com/journals/jamainternalmedicine/article-abstract/2707943 |
Chapter | Reference Number | Content | URL |
---|---|---|---|
Chapter 7 | 1 | World Health Organization. (2006). Neurological Disorders: Public health challenges. World Health Organization, Switzerland. | www.who.int/mental_health/neurology/neurological_disorders_report_web.pdf |
Chapter 7 | 2 | Dementia Australia. What is dementia? Dementia Australia. | www.dementia.org.au/about-dementia/what-is-dementia |
Chapter 7 | 3 | Solfrizzi, V. et al. (2008). Lifestyle-related factors in predementia and dementia syndromes. Expert Review of Neurotherapeutics, 8(1), 133–58. | www.tandfonline.com/doi/abs/10.1586/14737175.8.1.133 |
Chapter 7 | 4 | Evans, D. A. et al. (1989). Prevalence of Alzheimer’s disease in a community population of older persons: Higher than previously reported. JAMA, 262(18), 2551–6. | jamanetwork.com/journals/jama/article-abstract/379351 |
Chapter 7 | 5 | Heeren, T. J., Lagaay, A. M., Hijmans, W. and Rooymans, H. G. (1991). Prevalence of dementia in the ‘oldest old’ of a Dutch community. Journal of the American Geriatrics Society, 39(8), 755–9. | onlinelibrary.wiley.com/doi/abs/10.1111/j.1532-5415.1991.tb02696.x |
Chapter 7 | 6 | Lang, L. et al. (2017). Prevalence and determinants of undetected dementia in the community: A systematic literature review and a meta-analysis. BMJ Open, 7(2), e011146. | bmjopen.bmj.com/content/7/2/e011146 |
Chapter 7 | 7 | Alzheimer’s Disease International. Dementia statistics. Alzheimer’s Disease International. | www.alz.co.uk/research/statistics |
Chapter 7 | 8 | Dementia Australia. (2020). Dementia statistics. Dementia Australia. | www.dementia.org.au/statistics |
Chapter 7 | 9 | Alzheimer’s Association. Is dementia hereditary? Alzheimer’s Association UK. | www.alzheimers.org.uk/about-dementia/risk-factors-and-prevention/is-dementia-hereditary |
Chapter 7 | 10 | Verheijen, J. and Sleegers, K. (2018). Understanding Alzheimer disease at the interface between genetics and transcriptomics. Trends in Genetics, 34(6), 434–47. | www.sciencedirect.com/science/article/pii/S0168952518300428 |
Chapter 7 | 11 | Duong, S., Patel, T. and Chang, F. (2017). Dementia: What pharmacists need to know. Canadian Pharmacists Journal/Revue des Pharmaciens du Canada, 150(2), 118–29. | journals.sagepub.com/doi/abs/10.1177/1715163517690745 |
Chapter 7 | 12 | Nalbantoglu, J., Gilfix, B. M., Bertrand, P., Robitaille, Y., Gauthier, S., Rosenblatt, D. S. and Poirier, J. (1994). Predictive value of apolipoprotein E genotyping in Alzheimer’s disease: Results of an autopsy series and an analysis of several combined studies. Annals of Neurology, 36(6), 889–95. | onlinelibrary.wiley.com/doi/abs/10.1002/ana.410360614 |
Chapter 7 | 13 | Breitner, J. C. et al. (1995). Alzheimer’s disease in the National Academy of Sciences – National Research Council Registry of Aging Twin Veterans: III. Detection of cases, longitudinal results, and observations on twin concordance. Archives of Neurology, 52(8), 763–71. | jamanetwork.com/journals/jamaneurology/article-abstract/593579 |
Chapter 7 | 14 | Sherzai, D. and Sherzai, A. (2017). The Alzheimer’s Solution: A revolutionary guide to how you can prevent and reverse memory loss. Simon & Schuster, London. | www.simonandschuster.com.au/books/The-Alzheimers-Solution/Dean-Sherzai/9781471162787 |
Chapter 7 | 15 | Kolata, G. That new Alzheimer’s drug? Don’t get your hopes up yet. New York Times. 22 October 2019. | www.nytimes.com/2019/10/22/health/alzheimers-dementia-aducanumab.html |
Chapter 7 | 16 | Cremonini, A. L., Caffa, I., Cea, M., Nencioni, A., Odetti, P. and Monacelli, F. (2019). Nutrients in the Prevention of Alzheimer’s Disease. Oxidative Medicine and Cellular Longevity, 2019, 9874159. | www.hindawi.com/journals/omcl/2019/9874159 |
Chapter 7 | 17 | Morris, M. C., Tangney, C. C., Wang, Y., Sacks, F. M., Bennett, D. A. and Aggarwal, N. T. (2015). MIND diet associated with reduced incidence of Alzheimer’s disease. Alzheimer’s & Dementia, 11(9), 1007–14. | www.sciencedirect.com/science/article/pii/S1552526015000175 |
Chapter 7 | 18 | Morris, M. C., Wang, Y., Barnes, L. L., Bennett, D. A., Dawson-Hughes, B. and Booth, S. L. (2018). Nutrients and bioactives in green leafy vegetables and cognitive decline: Prospective study. Neurology, 90(3), e214–22. | n.neurology.org/content/90/3/e214?fbclid=IwAR0Bfu9q-eKvfRfhVVsYMD8qDKMF1th3b_CN2JxDg4DdWpEFkhy_V_46c18 |
Chapter 7 | 19 | Agarwal, P., Holland, T. M., Wang, Y., Bennett, D. A. and Morris, M. C. (2019). Association of strawberries and anthocyanidin intake with Alzheimer’s dementia risk. Nutrients, 11(12), 3060. | www.mdpi.com/2072-6643/11/12/3060 |
Chapter 7 | 20 | Rakesh, G., Szabo, S. T., Alexopoulos, G. S. and Zannas, A. S. (2017). Strategies for dementia prevention: Latest evidence and implications. Therapeutic Advances in Chronic Disease, 8(8–9), 121–36. | journals.sagepub.com/doi/abs/10.1177/2040622317712442 |
Chapter 7 | 21 | Pedditzi, E., Peters, R. and Beckett, N. (2016). The risk of overweight/obesity in mid-life and late life for the development of dementia: A systematic review and meta-analysis of longitudinal studies. Age and Ageing, 45(1), 14–21. | pubmed.ncbi.nlm.nih.gov/26764391 |
Chapter 7 | 22 | Zhang, J., Chen, C., Hua, S., Liao, H., Wang, M., Xiong, Y. and Cao, F. (2017). An updated meta-analysis of cohort studies: Diabetes and risk of Alzheimer’s disease. Diabetes Research and Clinical Practice, 124, 41–7. | pubmed.ncbi.nlm.nih.gov/28088029 |
Chapter 7 | 23 | Hofman, A. et al. (1997). Atherosclerosis, apolipoprotein E, and prevalence of dementia and Alzheimer’s disease in the Rotterdam Study. The Lancet, 349(9046), 151–4. | www.sciencedirect.com/science/article/pii/S0140673696093282 |
Chapter 7 | 24 | Ott, A. et al. (1998). Smoking and risk of dementia and Alzheimer’s disease in a population-based cohort study: The Rotterdam Study. The Lancet, 351(9119), 1840–3. | www.sciencedirect.com/science/article/pii/S0140673697075417 |
Chapter 7 | 25 | Anstey, K. J., Cherbuin, N., Budge, M. and Young, J. (2011). Body mass index in midlife and late‐life as a risk factor for dementia: A meta‐analysis of prospective studies. Obesity Reviews, 12(5), e426–37. | onlinelibrary.wiley.com/doi/full/10.1111/j.1467-789X.2010.00825.x |
Chapter 7 | 26 | Leonard, B. E. (2007). Inflammation, depression and dementia: Are they connected? Neurochemical Research, 32(10), 1749–56. | link.springer.com/article/10.1007/s11064-007-9385-y |
Chapter 7 | 27 | Kivipelto, M. et al. (2001). Midlife vascular risk factors and Alzheimer’s disease in later life: Longitudinal, population based study. BMJ, 322(7300), 1447–51. | www.bmj.com/content/322/7300/1447 |
Chapter 7 | 28 | Nordström, A. and Nordström, P. (2018). Traumatic brain injury and the risk of dementia diagnosis: A nationwide cohort study. PLOS Medicine, 15(1), e1002496. | journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1002496 |
Chapter 7 | 29 | Green, R. C. et al. (2003). Depression as a risk factor for Alzheimer disease: The MIRAGE Study. Archives of Neurology, 60(5), 753–9. | jamanetwork.com/journals/jamaneurology/article-abstract/784148 |
Chapter 7 | 30 | Ouanes, S. and Popp, J. (2019). High cortisol and the risk of dementia and Alzheimer’s disease: A review of the literature. Frontiers in Aging Neuroscience, 11, 43. | www.frontiersin.org/articles/10.3389/fnagi.2019.00043 |
Chapter 7 | 31 | Kaneshwaran, K. et al. (2019). Sleep fragmentation, microglial aging, and cognitive impairment in adults with and without Alzheimer’s dementia. Science Advances, 5(12), eaax7331. | advances.sciencemag.org/content/5/12/eaax7331 |
Chapter 7 | 32 | Welch, K. A. (2017). Alcohol consumption and brain health. BMJ, 357, j2645. | www.bmj.com/content/357/bmj.j2645 |
Chapter 7 | 33 | Sprecher, K. E. et al. (2017). Poor sleep is associated with CSF biomarkers of amyloid pathology in cognitively normal adults. Neurology, 89(5), 445–53. | n.neurology.org/content/89/5/445 |
Chapter 7 | 34 | Solomon, A., Kivipelto, M., Wolozin, B., Zhou, J. and Whitmer, R. A. (2009). Midlife serum cholesterol and increased risk of Alzheimer’s and vascular dementia three decades later. Dementia and Geriatric Cognitive Disorders, 28(1), 75–80. | www.karger.com/Article/Abstract/231980 |
Chapter 7 | 35 | Chang, C. Y., Ke, D. S. and Chen, J. Y. (2009). Essential fatty acids and human brain. Acta Neurologica Taiwanica, 18(4), 231–41. | www.researchgate.net/profile/Chia_Yu_Chang3/publication/42438067_Essential_fatty_acids_and_human_brain/links/550048aa0cf204d683b3473a.pdf |
Chapter 7 | 36 | Zhang, J. and Liu, Q. (2015). Cholesterol metabolism and homeostasis in the brain. Protein & Cell, 6(4), 254–64. | link.springer.com/content/pdf/10.1007/s13238-014-0131-3.pdf |
Chapter 7 | 37 | Morris, M. C. and Tangney, C. C. (2014). Dietary fat composition and dementia risk. Neurobiology of Aging, 35, S59–64. | www.sciencedirect.com/science/article/pii/S0197458014003546 |
Chapter 7 | 38 | Wang, D. D. et al. (2016). Association of specific dietary fats with total and cause-specific mortality. JAMA Internal Medicine, 176(8), 1134–45. | jamanetwork.com/journals/jamainternalmedicine/article-abstract/2530902 |
Chapter 7 | 39 | Granholm, A. C., Bimonte-Nelson, H. A., Moore, A. B., Nelson, M. E., Freeman, L. R. and Sambamurti, K. (2008). Effects of a saturated fat and high cholesterol diet on memory and hippocampal morphology in the middle-aged rat. Journal of Alzheimer’s Disease, 14(2), 133–45. | content.iospress.com/articles/journal-of-alzheimers-disease/jad00835 |
Chapter 7 | 40 | Barnard, N. D., Bunner, A. E. and Agarwal, U. (2014). Saturated and trans fats and dementia: A systematic review. Neurobiology of Aging, 35, S65–73. | www.sciencedirect.com/science/article/pii/S0197458014003558 |
Chapter 7 | 41 | Okereke, O. I. et al. (2012). Dietary fat types and 4‐year cognitive change in community‐dwelling older women. Annals of Neurology, 72(1), 124–34. | onlinelibrary.wiley.com/doi/abs/10.1002/ana.23593 |
Chapter 7 | 42 | Kalmijn, S., Launer, L. J., Ott, A., Witteman, J. C., Hofman, A. and Breteler, M. M. (1997). Dietary fat intake and the risk of incident dementia in the Rotterdam Study. Annals of Neurology, 42(5), 776–82. | onlinelibrary.wiley.com/doi/abs/10.1002/ana.410420514 |
Chapter 7 | 43 | Liu, A. G., Ford, N. A., Hu, F. B., Zelman, K. M., Mozaffarian, D. and Kris-Etherton, P. M. (2017). A healthy approach to dietary fats: Understanding the science and taking action to reduce consumer confusion. Nutrition Journal, 16(1), 53. | www.ncbi.nlm.nih.gov/pmc/articles/PMC5577766 |
Chapter 7 | 44 | Morris, M. C. et al. (2003). Dietary fats and the risk of incident Alzheimer disease. Archives of Neurology, 60(2), 194–200. | pubmed.ncbi.nlm.nih.gov/12580703 |
Chapter 7 | 45 | Olsson, A. G. et al. (2017). Can LDL cholesterol be too low? Possible risks of extremely low levels. Journal of Internal Medicine, 281(6), 534–53. | onlinelibrary.wiley.com/doi/abs/10.1111/joim.12614 |
Chapter 7 | 46 | Blom, D. J., Djedjos, C. S., Monsalvo, M. L., Bridges, I., Wasserman, S. M., Scott, R. and Roth, E. (2015). Effects of evolocumab on vitamin E and steroid hormone levels: Results from the 52-week, phase 3, double-blind, randomized, placebo-controlled DESCARTES study. Circulation Research, 117(8), 731–41. | www.ahajournals.org/doi/abs/10.1161/CIRCRESAHA.115.307071 |
Chapter 7 | 47 | Cybulska, B., Kłosiewicz-Latoszek, L., Penson, P. E., Nabavi, S. M., Lavie, C. J. and Banach, M. (2020). How much should LDL cholesterol be lowered in secondary prevention? Clinical efficacy and safety in the era of PCSK9 inhibitors. Progress in Cardiovascular Diseases, advance online publication. | www.sciencedirect.com/science/article/pii/S0033062020302103 |
Chapter 7 | 48 | Alzheimer’s Society. Coconut oil and dementia. Alzheimer’s Society. | www.alzheimers.org.uk/about-dementia/treatments/alternative-therapies/coconut-oil-and-dementia |
Chapter 7 | 49 | Neelakantan, N., Seah, J. and van Dam, R. M. (2020). The effect of coconut oil consumption on cardiovascular risk factors: A systematic review and meta-analysis of clinical trials. Circulation, 141(10), 803–14. | pubmed.ncbi.nlm.nih.gov/31928080 |
Chapter 7 | 50 | Giem, P., Beeson, W. L. and Fraser, G. E. (1993). The incidence of dementia and intake of animal products: Preliminary findings from the Adventist Health Study. Neuroepidemiology, 12(1), 28–36. | www.karger.com/Article/Abstract/110296 |
Chapter 7 | 51 | Wu, J. et al. (2019). Dietary pattern in midlife and cognitive impairment in late life: A prospective study in Chinese adults. American Journal of Clinical Nutrition, 110(4), 912–20. | academic.oup.com/ajcn/article-abstract/110/4/912/5543218 |
Chapter 7 | 52 | Loughrey, D. G., Lavecchia, S., Brennan, S., Lawlor, B. A. and Kelly, M. E. (2017). The impact of the Mediterranean diet on the cognitive functioning of healthy older adults: A systematic review and meta-analysis. Advances in Nutrition, 8(4), 571–86. | academic.oup.com/advances/article-abstract/8/4/571/4558137 |
Chapter 7 | 53 | Cao, L. et al. (2016). Dietary patterns and risk of dementia: A systematic review and meta-analysis of cohort studies. Molecular Neurobiology, 53(9), 6144–54. | link.springer.com/article/10.1007/s12035-015-9516-4 |
Chapter 7 | 54 | Berendsen, A. A., Kang, J. H., van de Rest, O., Feskens, E. J., de Groot, L. C. and Grodstein, F. (2017). The dietary approaches to stop hypertension diet, cognitive function, and cognitive decline in American older women. Journal of the American Medical Directors Association, 18(5), 427–32. | www.sciencedirect.com/science/article/pii/S1525861016305588 |
Chapter 7 | 55 | Wengreen, H. et al. (2013). Prospective study of Dietary Approaches to Stop Hypertension– and Mediterranean-style dietary patterns and age-related cognitive change: The Cache County Study on Memory, Health and Aging. American Journal of Clinical Nutrition, 98(5), 1263–71. | academic.oup.com/ajcn/article-abstract/98/5/1263/4577302 |
Chapter 7 | 56 | Lourida, I. et al. (2013). Mediterranean diet, cognitive function, and dementia: A systematic review. Epidemiology, 24(4), 479–89. | www.jstor.org/stable/23486687 |
Chapter 7 | 57 | Morris, M. C., Tangney, C. C., Wang, Y., Sacks, F. M., Barnes, L. L., Bennett, D. A. and Aggarwal, N. T. (2015). MIND diet slows cognitive decline with aging. Alzheimer’s & Dementia, 11(9), 1015–22. | www.sciencedirect.com/science/article/pii/S1552526015001946 |
Chapter 7 | 58 | Hosking, D. E., Eramudugolla, R., Cherbuin, N. and Anstey, K. J. (2019). MIND not Mediterranean diet related to 12-year incidence of cognitive impairment in an Australian longitudinal cohort study. Alzheimer’s & Dementia, 15(4), 581–9. | www.sciencedirect.com/science/article/pii/S1552526018336288 |
Chapter 7 | 59 | Morris, M. C., Evans, D. A., Tangney, C. C., Bienias, J. L. and Wilson, R. S. (2006). Associations of vegetable and fruit consumption with age-related cognitive change. Neurology, 67(8), 1370–6. | n.neurology.org/content/67/8/1370 |
Chapter 7 | 60 | Devore, E. E., Kang, J. H., Breteler, M. M. and Grodstein, F. (2012). Dietary intakes of berries and flavonoids in relation to cognitive decline. Annals of Neurology, 72(1), 135–43. | onlinelibrary.wiley.com/doi/abs/10.1002/ana.23594 |
Chapter 7 | 61 | Engelhart, M. J., Geerlings, M. I., Ruitenberg, A., van Swieten, J. C., Hofman, A., Witteman, J. C. and Breteler, M. M. (2002). Dietary intake of antioxidants and risk of Alzheimer disease. JAMA, 287(24), 3223–9. | jamanetwork.com/journals/jama/article-abstract/195058 |
Chapter 7 | 62 | Commenges, D., Scotet, V., Renaud, S., Jacqmin-Gadda, H., Barberger-Gateau, P. and Dartigues, J. F. (2000). Intake of flavonoids and risk of dementia. European Journal of Epidemiology, 16(4), 357–63. | link.springer.com/article/10.1023/A:1007614613771 |
Chapter 7 | 63 | Letenneur, L., Proust-Lima, C., Le Gouge, A., Dartigues, J. F. and Barberger-Gateau, P. (2007). Flavonoid intake and cognitive decline over a 10-year period. American Journal of Epidemiology, 165(12), 1364–71. | academic.oup.com/aje/article-abstract/165/12/1364/125579 |
Chapter 7 | 64 | Feart, C. et al. (2016). Plasma carotenoids are inversely associated with dementia risk in an elderly French cohort. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 71(5), 683–8. | academic.oup.com/biomedgerontology/article-abstract/71/5/683/2465599 |
Chapter 7 | 65 | Filosa, S., Di Meo, F. and Crispi, S. (2018). Polyphenols-gut microbiota interplay and brain neuromodulation. Neural Regeneration Research, 13(12), 2055. | www.ncbi.nlm.nih.gov/pmc/articles/pmc6199944 |
Chapter 7 | 66 | Dueñas, M. et al. (2015). A survey of modulation of gut microbiota by dietary polyphenols. BioMed Research International, 2015, 850902. | www.hindawi.com/journals/bmri/2015/850902 |
Chapter 7 | 67 | Ho, L., Ono, K., Tsuji, M., Mazzola, P., Singh, R. and Pasinetti, G. M. (2018). Protective roles of intestinal microbiota derived short chain fatty acids in Alzheimer’s disease-type beta-amyloid neuropathological mechanisms. Expert Review of Neurotherapeutics, 18(1), 83–90. | www.tandfonline.com/doi/abs/10.1080/14737175.2018.1400909 |
Chapter 7 | 68 | Szwajgier, D., Borowiec, K. and Pustelniak, K. (2017). The neuroprotective effects of phenolic acids: Molecular mechanism of action. Nutrients, 9(5), 477. | www.mdpi.com/2072-6643/9/5/477 |
Chapter 7 | 69 | Omar, S. H. (2019). Mediterranean and MIND diets containing olive biophenols reduces the prevalence of Alzheimer’s disease. International Journal of Molecular Sciences, 20(11), 2797. | www.mdpi.com/1422-0067/20/11/2797 |
Chapter 7 | 70 | Radd-Vagenas, S., Duffy, S. L., Naismith, S. L., Brew, B. J., Flood, V. M. and Fiatarone Singh, M. A. (2018). Effect of the Mediterranean diet on cognition and brain morphology and function: A systematic review of randomized controlled trials. American Journal of Clinical Nutrition, 107(3), 389–404. | academic.oup.com/ajcn/article-abstract/107/3/389/4939347 |
Chapter 7 | 71 | Valls-Pedret, C. et al. (2015). Mediterranean diet and age-related cognitive decline: A randomized clinical trial. JAMA Internal Medicine, 175(7), 1094–103. | jamanetwork.com/journals/jamainternalmedicine/article-abstract/2293082 |
Chapter 7 | 72 | Morris, M. C. MIND diet intervention and cognitive decline (MIND). ClinicalTrials.gov. | clinicaltrials.gov/ct2/show/NCT02817074 |
Chapter 7 | 73 | Ornish, D. Alzheimer’s disease (current trial). Preventive Medicine Research Institute. | pmri.org/research/reverse-alzheimers-disease-current-trial |
Chapter 7 | 74 | Johns Hopkins University. Feasibility and efficacy of dietary interventions for older adults with subjective cognitive decline. ClinicalTrials.gov. | clinicaltrials.gov/ct2/show/NCT03585907 |
Chapter 7 | 75 | Dinu, M., Abbate, R., Gensini, G. F., Casini, A. and Sofi, F. (2017). Vegetarian, vegan diets and multiple health outcomes: A systematic review with meta-analysis of observational studies. Critical Reviews in Food Science and Nutrition, 57(17), 3640–9. | www.tandfonline.com/doi/abs/10.1080/10408398.2016.1138447 |
Chapter 7 | 76 | Benatar, J. R. and Stewart, R. (2018). Cardiometabolic risk factors in vegans: A meta-analysis of observational studies. PLOS One, 13(12), e0209086. | journals.plos.org/plosone/article?id=10.1371/journal.pone.0209086 |
Chapter 7 | 77 | Huang, R. Y., Huang, C. C., Hu, F. B. and Chavarro, J. E. (2016). Vegetarian diets and weight reduction: A meta-analysis of randomized controlled trials. Journal of General Internal Medicine, 31(1), 109–16. | link.springer.com/article/10.1007/s11606-015-3390-7 |
Chapter 7 | 78 | Yokoyama, Y., Levin, S. M. and Barnard, N. D. (2017). Association between plant-based diets and plasma lipids: A systematic review and meta-analysis. Nutrition Reviews, 75(9), 683–98. | academic.oup.com/nutritionreviews/article-abstract/75/9/683/4062197 |
Chapter 7 | 79 | Yokoyama, Y., Barnard, N. D., Levin, S. M. and Watanabe, M. (2014). Vegetarian diets and glycemic control in diabetes: A systematic review and meta-analysis. Cardiovascular Diagnosis and Therapy, 4(5), 373. | www.ncbi.nlm.nih.gov/pmc/articles/PMC4221319 |
Chapter 7 | 80 | Haghighatdoost, F., Bellissimo, N., de Zepetnek, J. O. T. and Rouhani, M. H. (2017). Association of vegetarian diet with inflammatory biomarkers: A systematic review and meta-analysis of observational studies. Public Health Nutrition, 20(15), 2713–21. | www.cambridge.org/core/journals/public-health-nutrition/article/association-of-vegetarian-diet-with-inflammatory-biomarkers-a-systematic-review-and-metaanalysis-of-observational-studies/ED9F562A1AEC0E65B90A092A0427C093 |
Chapter 7 | 81 | Yokoyama, Y. et al. (2014). Vegetarian diets and blood pressure: A meta-analysis. JAMA Internal Medicine, 174(4), 577–87. | jamanetwork.com/journals/jamainternalmedicine/article-abstract/1832195 |
Chapter 7 | 82 | Agarwal, U., Mishra, S., Xu, J., Levin, S., Gonzales, J. and Barnard, N. D. (2015). A multicenter randomized controlled trial of a nutrition intervention program in a multiethnic adult population in the corporate setting reduces depression and anxiety and improves quality of life: The GEICO study. American Journal of Health Promotion, 29(4), 245–54. | journals.sagepub.com/doi/abs/10.4278/ajhp.130218-QUAN-72 |
Chapter 7 | 83 | Beezhold, B. L. and Johnston, C. S. (2012). Restriction of meat, fish, and poultry in omnivores improves mood: A pilot randomized controlled trial. Nutrition Journal, 11(1), 1–5. | nutritionj.biomedcentral.com/articles/10.1186/1475-2891-11-9 |
Chapter 7 | 84 | McMacken, M. and Shah, S. (2017). A plant-based diet for the prevention and treatment of type 2 diabetes. Journal of Geriatric Cardiology, 14(5), 342–54. | www.ncbi.nlm.nih.gov/pmc/articles/pmc5466941 |
Chapter 7 | 85 | Dhana, K., Evans, D. A., Rajan, K. B., Bennett, D. A. and Morris, M. C. (2020). Healthy lifestyle and the risk of Alzheimer dementia: Findings from 2 longitudinal studies. Neurology, 95(4), e374–83. | n.neurology.org/content/95/4/e374 |
Chapter 7 | 86 | Xu, W., Wang, H., Wan, Y. et al. (2017). Alcohol consumption and dementia risk: A dose-response meta-analysis of prospective studies. European Journal of Epidemiology, 32, 31–42. | link.springer.com/article/10.1007/s10654-017-0225-3 |
Chapter 7 | 87 | Holland, T. M., Agarwal, P., Wang, Y., Leurgans, S. E., Bennett, D. A., Booth, S. L. and Morris, M. C. (2020). Dietary flavonols and risk of Alzheimer dementia. Neurology, 94(16), e1749–56. | n.neurology.org/content/94/16/e1749 |
Chapter 7 | 88 | Shukitt-Hale, B., Bielinski, D. F., Lau, F. C., Willis, L. M., Carey, A. N. and Joseph, J. A. (2015). The beneficial effects of berries on cognition, motor behaviour and neuronal function in ageing. British Journal of Nutrition, 114(10), 1542–9. | www.cambridge.org/core/journals/british-journal-of-nutrition/article/beneficial-effects-of-berries-on-cognition-motor-behaviour-and-neuronal-function-in-ageing/751902ED1F6B94DFEC9AB7FB8C89C0DA |
Chapter 7 | 89 | Whyte, A. R., Cheng, N., Butler, L. T., Lamport, D. J. and Williams, C. M. (2019). Flavonoid-rich mixed berries maintain and improve cognitive function over a 6 h period in young healthy adults. Nutrients, 11(11), 2685. | www.mdpi.com/2072-6643/11/11/2685/htm |
Chapter 7 | 90 | Dodd, G. F., Williams, C. M., Butler, L. T. and Spencer, J. P. (2019). Acute effects of flavonoid-rich blueberry on cognitive and vascular function in healthy older adults. Nutrition and Healthy Aging, 5(2), 119–32. | content.iospress.com/articles/nutrition-and-healthy-aging/nha180056 |
Chapter 7 | 91 | Zeng, L. F. et al. (2017). An exploration of the role of a fish-oriented diet in cognitive decline: A systematic review of the literature. Oncotarget, 8(24), 39877. | www.ncbi.nlm.nih.gov/pmc/articles/PMC5503660 |
Chapter 7 | 92 | Zhang, Y., Chen, J., Qiu, J., Li, Y., Wang, J. and Jiao, J. (2016). Intakes of fish and polyunsaturated fatty acids and mild-to-severe cognitive impairment risks: A dose-response meta-analysis of 21 cohort studies. American Journal of Clinical Nutrition, 103(2), 330–40. | academic.oup.com/ajcn/article-abstract/103/2/330/4662879 |
Chapter 7 | 93 | Morris, M. C. et al. (2003). Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease. Archives of Neurology, 60(7), 940–6. | jamanetwork.com/journals/jamaneurology/article-abstract/784412 |
Chapter 7 | 94 | Australian Institute of Health and Welfare. (2020). Mental health services in Australia. AIHW, Australian Government, Canberra. | www.aihw.gov.au/reports/mental-health-services/mental-health-services-in-australia/report-contents/mental-health-related-prescriptions |
Chapter 7 | 95 | Saghafian, F., Malmir, H., Saneei, P., Milajerdi, A., Larijani, B. and Esmaillzadeh, A. (2018). Fruit and vegetable consumption and risk of depression: Accumulative evidence from an updated systematic review and meta-analysis of epidemiological studies. British Journal of Nutrition, 119(10), 1087–101. | www.cambridge.org/core/journals/british-journal-of-nutrition/article/fruit-and-vegetable-consumption-and-risk-of-depression-accumulative-evidence-from-an-updated-systematic-review-and-metaanalysis-of-epidemiological-studies/06F5410553CF2C3849AAB0D9CE56E9B5 |
Chapter 7 | 96 | Głąbska, D., Guzek, D., Groele, B. and Gutkowska, K. (2020). Fruit and vegetable intake and mental health in adults: A systematic review. Nutrients, 12(1), 115. | www.mdpi.com/2072-6643/12/1/115 |
Chapter 7 | 97 | Clapp, M., Aurora, N., Herrera, L., Bhatia, M., Wilen, E. and Wakefield, S. (2017). Gut microbiota’s effect on mental health: The gut–brain axis. Clinics and Practice, 7(4), 987. | www.ncbi.nlm.nih.gov/pmc/articles/PMC5641835 |
Chapter 7 | 98 | Littlejohns, T. J. et al. (2014). Vitamin D and the risk of dementia and Alzheimer disease. Neurology, 83(10), 920–8. | n.neurology.org/content/83/10/920 |
Chapter 7 | 99 | Holick, M. F. (2004). Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. American Journal of Clinical Nutrition, 80(6), 1678S–88S. | academic.oup.com/ajcn/article/80/6/1678S/4690512 |
Chapter 7 | 100 | Rutjes, A. W. et al. (2018). Vitamin and mineral supplementation for maintaining cognitive function in cognitively healthy people in mid and late life. Cochrane Database of Systematic Reviews, (12), CD011906. | pubmed.ncbi.nlm.nih.gov/30556597 |
Chapter 7 | 101 | Sydenham, E., Dangour, A. D. and Lim, W. S. (2012). Omega 3 fatty acid for the prevention of cognitive decline and dementia. Cochrane Database of Systematic Reviews, (6), CD005379. | pubmed.ncbi.nlm.nih.gov/22696350 |
Chapter 7 | 102 | McCleery, J. et al. (2018). Vitamin and mineral supplementation for preventing dementia or delaying cognitive decline in people with mild cognitive impairment. Cochrane Database of Systematic Reviews, (11), CD011905. | www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD011905.pub2 |
Chapter 7 | 103 | mhGAP. (2015). Nutritional interventions for people with dementia or cognitive impairment: Do nutritional interventions for people with dementia or cognitive impairment reduce the progression of cognitive decline? World Health Organization. | www.who.int/mental_health/mhgap/evidence/dementia/Dementia_q12.pdf |
Chapter 7 | 104 | Rajaram, S., Jones, J. and Lee, G. J. (2019). Plant-based dietary patterns, plant foods, and age-related cognitive decline. Advances in Nutrition, 10(Supplement_4), S422–36. | academic.oup.com/advances/article/10/Supplement_4/S422/5624068 |
Chapter | Reference Number | Content | URL |
---|---|---|---|
Chapter 8 | 1 | Lu, Y. et al. (2019). Reversal of ageing- and injury-induced vision loss by Tet-dependent epigenetic reprogramming. BioRxiv, 710210. | www.biorxiv.org/content/10.1101/710210v1 |
Chapter 8 | 2 | Kane, A. E. and Sinclair, D. A. (2019). Epigenetic changes during aging and their reprogramming potential. Critical Reviews in Biochemistry and Molecular Biology, 54(1), 61–83. | www.tandfonline.com/doi/abs/10.1080/10409238.2019.1570075 |
Chapter 8 | 3 | Song, M., Fung, T. T., Hu, F. B., Willett, W. C., Longo, V. D., Chan, A. T. and Giovannucci, E. L. (2016). Association of animal and plant protein intake with all-cause and cause-specific mortality. JAMA Internal Medicine, 176(10), 1453–63. | jamanetwork.com/journals/jamainternalmedicine/article-abstract/2540540 |
Chapter 8 | 4 | Huang, J., Liao, L. M., Weinstein, S. J., Sinha, R., Graubard, B. I. and Albanes, D. (2020). Association between plant and animal protein intake and overall and cause-specific mortality. JAMA Internal Medicine, 180(9), 1173–84. | jamanetwork.com/journals/jamainternalmedicine/article-abstract/2768358 |
Chapter 8 | 5 | Chen, Z. et al. (2020). Dietary protein intake and all-cause and cause-specific mortality: Results from the Rotterdam Study and a meta-analysis of prospective cohort studies. European Journal of Epidemiology, 35, 411–29. | link.springer.com/article/10.1007/s10654-020-00607-6 |
Chapter 8 | 6 | Budhathoki, S. et al. (2019). Association of animal and plant protein intake with all-cause and cause-specific mortality in a Japanese cohort. JAMA Internal Medicine, 179(11), 1509–18. | jamanetwork.com/journals/jamainternalmedicine/article-abstract/2748453 |
Chapter 8 | 7 | Li, H., Li, J., Shen, Y., Wang, J. and Zhou, D. (2017). Legume consumption and all-cause and cardiovascular disease mortality. BioMed Research International, 2017, 8450618. | www.hindawi.com/journals/bmri/2017/8450618 |
Chapter 8 | 8 | Darmadi-Blackberry, I., Wahlqvist, M. L., Kouris-Blazos, A., Steen, B., Lukito, W., Horie, Y. and Horie, K. (2004). Legumes: The most important dietary predictor of survival in older people of different ethnicities. Asia Pacific Journal of Clinical Nutrition, 13(2), 217–20. | citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.538.8279&rep=rep1&type=pdf |
Chapter 8 | 9 | Hayat, I., Ahmad, A., Masud, T., Ahmed, A. and Bashir, S. (2014). Nutritional and health perspectives of beans (Phaseolus vulgaris L.): An overview. Critical Reviews in Food Science and Nutrition, 54(5), 580–92. | www.tandfonline.com/doi/abs/10.1080/10408398.2011.596639 |
Chapter 8 | 10 | Sinclair, D. A. and LaPlante, M. D. (2019). Lifespan: Why we age – and why we don’t have to. Thorsons, London. | www.harpercollins.com.au/9780008292362/lifespan-why-we-age-and-why-we-dont-have-to |
Chapter 8 | 11 | Gardner, C. D., Hartle, J. C., Garrett, R. D., Offringa, L. C. and Wasserman, A. S. (2019). Maximizing the intersection of human health and the health of the environment with regard to the amount and type of protein produced and consumed in the United States. Nutrition Reviews, 77(4), 197–215. | www.ncbi.nlm.nih.gov/pmc/articles/PMC6394758 |
Chapter 8 | 12 | Kitada, M., Ogura, Y., Monno, I. and Koya, D. (2019). The impact of dietary protein intake on longevity and metabolic health. EBioMedicine, 43, 632–40. | www.ncbi.nlm.nih.gov/pmc/articles/PMC6562018 |
Chapter 8 | 13 | Orgeron, M. L., Stone, K. P., Wanders, D., Cortez, C. C., Van, N. T. and Gettys, T. W. (2014). The impact of dietary methionine restriction on biomarkers of metabolic health. Progress in Molecular Biology and Translational Science, 121, 351–76. | www.ncbi.nlm.nih.gov/pmc/articles/PMC4049285 |
Chapter 8 | 14 | McCarty, M. F., Barroso-Aranda, J. and Contreras, F. (2009). The low-methionine content of vegan diets may make methionine restriction feasible as a life extension strategy. Medical Hypotheses, 72(2), 125–8. | www.researchgate.net/publication/23256014_The_low-methionine_content_of_vegan_diets_may_make_methionine_restriction_feasible_as_a_life_extension_strategy |
Chapter 8 | 15 | Katagiri, R. et al. (2020). Dietary fiber intake and total and cause-specific mortality: The Japan Public Health Center-based prospective study. American Journal of Clinical Nutrition, 111(5), 1027–35. | academic.oup.com/ajcn/article-abstract/111/5/1027/5716885 |
Chapter 8 | 16 | Ding, M. et al. (2019). Associations of dairy intake with risk of mortality in women and men: Three prospective cohort studies. BMJ, 367, l6204. | www.bmj.com/content/367/bmj.l6204 |
Chapter 8 | 17 | Wang, D. D. et al. (2016). Association of specific dietary fats with total and cause-specific mortality. JAMA Internal Medicine, 176(8), 1134–45. | jamanetwork.com/journals/jamainternalmedicine/article-abstract/2530902 |
Chapter 8 | 18 | Rico-Campà, A., Martínez-González, M. A., Alvarez-Alvarez, I., de Deus Mendonça, R., de la Fuente-Arrillaga, C., Gómez-Donoso, C. and Bes-Rastrollo, M. (2019). Association between consumption of ultra-processed foods and all cause mortality: SUN prospective cohort study. BMJ, 365, l1949. | www.bmj.com/content/365/bmj.l1949 |
Chapter 8 | 19 | Bonaccio, M. et al. (2021). Ultra-processed food consumption is associated with increased risk of all-cause and cardiovascular mortality in the Moli-sani Study. American Journal of Clinical Nutrition, 113(2), 446–55. | academic.oup.com/ajcn/article/113/2/446/6039202 |
Chapter 8 | 20 | Schnabel, L. et al. (2019). Association between ultraprocessed food consumption and risk of mortality among middle-aged adults in France. JAMA Internal Medicine, 179(4), 490–8. | jamanetwork.com/journals/jamainternalmedicine/article-abstract/2723626 |
Chapter 8 | 21 | Zhong, V. W. et al. (2020). Associations of processed meat, unprocessed red meat, poultry, or fish intake with incident cardiovascular disease and all-cause mortality. JAMA Internal Medicine, 180(4), 503–12. | jamanetwork.com/journals/jamainternalmedicine/article-abstract/2759737 |
Chapter 8 | 22 | Zhong, V. W., Van Horn, L., Cornelis, M. C. et al. (2019). Associations of dietary cholesterol or egg consumption with incident cardiovascular disease and mortality. JAMA, 321(11),1081–95. | jamanetwork.com/journals/jama/fullarticle/2728487 |
Chapter 8 | 23 | Zhao, L. G., Sun, J. W., Yang, Y., Ma, X., Wang, Y. Y. and Xiang, Y. B. (2016). Fish consumption and all-cause mortality: A meta-analysis of cohort studies. European Journal of Clinical Nutrition, 70(2), 155–61. | www.nature.com/articles/ejcn201572 |
Chapter 8 | 24 | Reynolds, A., Mann, J., Cummings, J., Winter, N., Mete, E. and Te Morenga, L. (2019). Carbohydrate quality and human health: A series of systematic reviews and meta-analyses. The Lancet, 393(10170), 434–45. | www.sciencedirect.com/science/article/pii/S0140673618318099 |
Chapter 8 | 25 | Chen, G. C., Zhang, R., Martínez-González, M. A., Zhang, Z. L., Bonaccio, M., van Dam, R. M. and Qin, L. Q. (2017). Nut consumption in relation to all-cause and cause-specific mortality: A meta-analysis 18 prospective studies. Food & Function, 8(11), 3893–905. | pubs.rsc.org/--/content/articlelanding/2017/fo/c7fo00915a |
Chapter 8 | 26 | Amba, V., Murphy, G., Etemadi, A., Wang, S., Abnet, C. C. and Hashemian, M. (2019). Nut and peanut butter consumption and mortality in the National Institutes of Health-AARP Diet and Health Study. Nutrients, 11(7), 1508. | www.mdpi.com/2072-6643/11/7/1508 |
Chapter 8 | 27 | Trichopoulou, A., Bamia, C. and Trichopoulos, D. (2009). Anatomy of health effects of Mediterranean diet: Greek EPIC prospective cohort study. BMJ, 338, b2337. | www.bmj.com/content/338/bmj.b2337 |
Chapter 8 | 28 | Kim, Y., Je, Y. and Giovannucci, E. (2019). Coffee consumption and all-cause and cause-specific mortality: A meta-analysis by potential modifiers. European Journal of Epidemiology, 34, 731–52. | link.springer.com/article/10.1007/s10654-019-00524-3 |
Chapter 8 | 29 | Willcox, D. C., Scapagnini, G. and Willcox, B. J. (2014). Healthy aging diets other than the Mediterranean: A focus on the Okinawan diet. Mechanisms of Ageing and Development, 136, 148–62. | www.sciencedirect.com/science/article/pii/S0047637414000037 |
Chapter 8 | 30 | Panagiotakos, D. B., Chrysohoou, C., Siasos, G., Zisimos, K., Skoumas, J., Pitsavos, C. and Stefanadis, C. (2011). Sociodemographic and lifestyle statistics of oldest old people (> 80 years) living in Ikaria Island: The Ikaria study. Cardiology Research and Practice, 2011, 679187. | www.hindawi.com/journals/crp/2011/679187 |
Chapter 8 | 31 | Pes, G. M., Tolu, F., Dore, M. P., Sechi, G. P., Errigo, A., Canelada, A. and Poulain, M. (2015). Male longevity in Sardinia, a review of historical sources supporting a causal link with dietary factors. European Journal of Clinical Nutrition, 69(4), 411–18. | www.nature.com/articles/ejcn2014230 |
Chapter 8 | 32 | Orlich, M. J. et al. (2013). Vegetarian dietary patterns and mortality in Adventist Health Study 2. JAMA Internal Medicine, 173(13), 1230–8. | jamanetwork.com/journals/jamainternalmedicine/article-abstract/1710093 |
Chapter 8 | 33 | Appel, L. J. (2008). Dietary patterns and longevity: Expanding the Blue Zones. Circulation, 118(3), 214–15. | www.ahajournals.org/doi/full/10.1161/CIRCULATIONAHA.108.788497 |
Chapter 8 | 34 | Keaver, L. et al. (2020). Plant- and animal-based diet quality and mortality among US adults: A cohort study. British Journal of Nutrition, 1-11. | www.cambridge.org/core/journals/british-journal-of-nutrition/article/abs/plant-and-animalbased-diet-quality-and-mortality-among-us-adults-a-cohort-study/107CDCF21A89DBE9ADE0CCB2ADA08A04 |
Chapter 8 | 35 | Martínez-González, M. A. et al. (2014). A provegetarian food pattern and reduction in total mortality in the Prevención con Dieta Mediterránea (PREDIMED) study. American Journal of Clinical Nutrition, 100(suppl_1), 320S–8S. | academic.oup.com/ajcn/article-abstract/100/suppl_1/320S/4576429 |
Chapter 8 | 36 | Aune, D. et al. (2016). Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: Systematic review and dose-response meta-analysis of prospective studies. BMJ, 353, i2716. | www.bmj.com/content/353/bmj.i2716 |
Chapter 8 | 37 | Khalighi Sikaroudi, M., Soltani, S., Kolahdouz‐Mohammadi, R., Clayton, Z. S., Fernandez, M. L., Varse, F. and Shidfar, F. (2020). The responses of different dosages of egg consumption on blood lipid profile: An updated systematic review and meta‐analysis of randomized clinical trials. Journal of Food Biochemistry, e13263. | onlinelibrary.wiley.com/doi/abs/10.1111/jfbc.13263 |
Chapter 8 | 38 | Zhuang, P. et al. (2021). Egg and cholesterol consumption and mortality from cardiovascular and different causes in the United States: A population-based cohort study. PLOS Medicine, 18(2), e1003508. | journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1003508 |
Chapter 8 | 39 | Cava, E. and Fontana, L. (2013). Will calorie restriction work in humans? Aging, 5(7), 507. | www.ncbi.nlm.nih.gov/pmc/articles/pmc3765579 |
Chapter 8 | 40 | Sedlmeier, A. M. et al. (2021). Relation of body fat mass and fat-free mass to total mortality: Results from 7 prospective cohort studies. American Journal of Clinical Nutrition, 2021, nqaa339. | academic.oup.com/ajcn/advance-article-abstract/doi/10.1093/ajcn/nqaa339/6092216 |
Chapter 8 | 41 | Derr, M. Of Tubers, fire and human evolution. New York Times. 16 January 2001. | www.nytimes.com/2001/01/16/science/of-tubers-fire-and-human-evolution.html |
Chapter 8 | 42 | University of Minnesota. Light my fire: Cooking as key to modern human evolution. ScienceDaily. 10 August 1999. | www.sciencedaily.com/releases/1999/08/990810064914.htm |
Chapter 8 | 43 | Pennisi, E. (1999). Did cooked tubers spur the evolution of big brains? Science, 283(5410), 2004–5. | science.sciencemag.org/content/283/5410/2004 |
Chapter 8 | 44 | Melamed, Y., Kislev, M. E., Geffen, E., Lev-Yadun, S. and Goren-Inbar, N. (2016). The plant component of an Acheulian diet at Gesher Benot Ya‘aqov, Israel. Proceedings of the National Academy of Sciences, 113(51), 14674–9. | www.pnas.org/content/113/51/14674 |
Chapter 8 | 45 | Barras, C. Ancient leftovers show the real Paleo diet was a veggie feast. New Scientist. 5 December 2016. | www.newscientist.com/article/2115127-ancient-leftovers-show-the-real-paleo-diet-was-a-veggie-feast |
Chapter 8 | 46 | Mercader, J. (2009). Mozambican grass seed consumption during the Middle Stone Age. Science, 326(5960), 1680–3. | science.sciencemag.org/content/326/5960/1680 |
Chapter 8 | 47 | Eaton, S. B. (2006). The ancestral human diet: What was it and should it be a paradigm for contemporary nutrition? Proceedings of the Nutrition Society, 65(1), 1–6. | www.cambridge.org/core/journals/proceedings-of-the-nutrition-society/article/ancestral-human-diet-what-was-it-and-should-it-be-a-paradigm-for-contemporary-nutrition/36E3866D0207692F8CA1CCA3BD947055 |
Chapter 8 | 48 | Hoffman, L. C. and Wiklund, E. (2006). Game and venison – meat for the modern consumer. Meat Science, 74(1), 197–208. | www.sciencedirect.com/science/article/pii/S0309174006001070 |
Chapter 8 | 49 | Paleari, M. A., Camisasca, S., Beretta, G., Renon, P., Corsico, P., Bertolo, G. and Crivelli, G. (1998). Ostrich meat: Physico-chemical characteristics and comparison with turkey and bovine meat. Meat Science, 48(3–4), 205–10. | www.sciencedirect.com/science/article/pii/S0309174097000910 |
Chapter 8 | 50 | Ricci, C., Baumgartner, J., Zec, M., Kruger, H. S. and Smuts, C. M. (2018). Type of dietary fat intakes in relation to all-cause and cause-specific mortality in US adults: An iso-energetic substitution analysis from the American National Health and Nutrition Examination Survey linked to the US mortality registry. British Journal of Nutrition, 119(4), 456–63. | www.cambridge.org/core/journals/british-journal-of-nutrition/article/type-of-dietary-fat-intakes-in-relation-to-allcause-and-causespecific-mortality-in-us-adults-an-isoenergetic-substitution-analysis-from-the-american-national-health-and-nutrition-examination-survey-linked-to-the-us-mortality-registry/925D760D572A2DADC9ACDD48910053BB |
Chapter 8 | 51 | Huth, P. J., Fulgoni, V. L., Keast, D. R., Park, K. and Auestad, N. (2013). Major food sources of calories, added sugars, and saturated fat and their contribution to essential nutrient intakes in the US diet: Data from the National Health and Nutrition Examination Survey (2003–2006). Nutrition Journal, 12(1), 116. | link.springer.com/article/10.1186/1475-2891-12-116 |
Chapter 8 | 52 | Buil-Cosiales, P. et al. (2014). Fiber intake and all-cause mortality in the Prevención con Dieta Mediterránea (PREDIMED) study. American Journal of Clinical Nutrition, 100(6), 1498–507. | academic.oup.com/ajcn/article-abstract/100/6/1498/4576553 |
Chapter 8 | 53 | Liu, L., Wang, S. and Liu, J. (2015). Fiber consumption and all‐cause, cardiovascular, and cancer mortalities: A systematic review and meta‐analysis of cohort studies. Molecular Nutrition & Food Research, 59(1), 139–46. | onlinelibrary.wiley.com/doi/abs/10.1002/mnfr.201400449 |
Chapter 8 | 54 | Fayet-Moore, F., Cassettari, T., Tuck, K., McConnell, A. and Petocz, P. (2018). Dietary fibre intake in Australia. Paper I: Associations with demographic, socio-economic, and anthropometric factors. Nutrients, 10(5), 599. | www.mdpi.com/2072-6643/10/5/599 |
Chapter 8 | 55 | Aune, D. et al. (2017). Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality: A systematic review and dose-response meta-analysis of prospective studies. International Journal of Epidemiology, 46(3), 1029–56. | academic.oup.com/ije/article-abstract/46/3/1029/3039477 |
Chapter 8 | 56 | Bao, Y., Han, J., Hu, F. B., Giovannucci, E. L., Stampfer, M. J., Willett, W. C. and Fuchs, C. S. (2013). Association of nut consumption with total and cause-specific mortality. New England Journal of Medicine, 369(21), 2001–11. | www.nejm.org/doi/full/10.1056/NEJMoa1307352 |
Chapter 8 | 57 | Eslamparast, T. et al. (2017). Nut consumption and total and cause-specific mortality: Results from the Golestan Cohort Study. International Journal of Epidemiology, 46(1), 75–85. | academic.oup.com/ije/article-abstract/46/1/75/2617152 |
Chapter 8 | 58 | Hshieh, T. T., Petrone, A. B., Gaziano, J. M. and Djoussé, L. (2015). Nut consumption and risk of mortality in the Physicians’ Health Study. American Journal of Clinical Nutrition, 101(2), 407–12. | academic.oup.com/ajcn/article-abstract/101/2/407/4494398 |
Chapter 8 | 59 | Guasch-Ferré, M. et al. (2013). Frequency of nut consumption and mortality risk in the PREDIMED nutrition intervention trial. BMC Medicine, 11(1), 1–11. | bmcmedicine.biomedcentral.com/articles/10.1186/1741-7015-11-164 |
Chapter 8 | 60 | Luo, C. et al. (2014). Nut consumption and risk of type 2 diabetes, cardiovascular disease, and all-cause mortality: A systematic review and meta-analysis. American Journal of Clinical Nutrition, 100(1), 256–69. | academic.oup.com/ajcn/article-abstract/100/1/256/4576536 |
Chapter 8 | 61 | Jackson, C. L. and Hu, F. B. (2014). Long-term associations of nut consumption with body weight and obesity. American Journal of Clinical Nutrition, 100(suppl_1), 408S–11S. | academic.oup.com/ajcn/article-abstract/100/suppl_1/408S/4576543 |
Chapter 8 | 62 | Meng, X., Li, Y., Li, S., Zhou, Y., Gan, R. Y., Xu, D. P. and Li, H. B. (2017). Dietary sources and bioactivities of melatonin. Nutrients, 9(4), 367. | www.mdpi.com/2072-6643/9/4/367 |
Chapter 8 | 63 | Yin, J. et al. (2017). Relationship of sleep duration with all‐cause mortality and cardiovascular events: A systematic review and dose-response meta‐analysis of prospective cohort studies. Journal of the American Heart Association, 6(9), e005947. | www.ahajournals.org/doi/abs/10.1161/JAHA.117.005947 |
Chapter 8 | 64 | Poole, R., Kennedy, O. J., Roderick, P., Fallowfield, J. A., Hayes, P. C. and Parkes, J. (2017). Coffee consumption and health: Umbrella review of meta-analyses of multiple health outcomes. BMJ, 359, j5024. | www.bmj.com/content/359/bmj.j5024 |
Chapter 8 | 65 | Crippa, A., Discacciati, A., Larsson, S. C., Wolk, A. and Orsini, N. (2014). Coffee consumption and mortality from all causes, cardiovascular disease, and cancer: A dose-response meta-analysis. American Journal of Epidemiology, 180(8), 763–75. | academic.oup.com/aje/article-abstract/180/8/763/2739131 |
Chapter 8 | 66 | Carlsen, M. H. et al. (2010). The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutrition Journal, 9(1), 3. | link.springer.com/article/10.1186/1475-2891-9-3 |
Chapter 8 | 67 | Pietrocola, F. et al. (2014). Coffee induces autophagy in vivo. Cell Cycle, 13(12), 1987–94. | www.tandfonline.com/doi/abs/10.4161/cc.28929 |
Chapter 8 | 68 | Prasanth, M. I., Sivamaruthi, B. S., Chaiyasut, C. and Tencomnao, T. (2019). A review of the role of green tea (Camellia sinensis) in antiphotoaging, stress resistance, neuroprotection, and autophagy. Nutrients, 11(2), 474. | www.mdpi.com/2072-6643/11/2/474 |
Chapter 8 | 69 | Shakeri, A., Cicero, A. F., Panahi, Y., Mohajeri, M. and Sahebkar, A. (2019). Curcumin: A naturally occurring autophagy modulator. Journal of Cellular Physiology, 234(5), 5643–54. | onlinelibrary.wiley.com/doi/abs/10.1002/jcp.27404 |
Chapter 8 | 70 | Shoba, G., Joy, D., Joseph, T., Majeed, M., Rajendran, R. and Srinivas, P. S. (1998). Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Medica, 64(4), 353–6. | pubmed.ncbi.nlm.nih.gov/9619120 |
Chapter 8 | 71 | Kalpravidh, R. W. et al. (2010). Improvement in oxidative stress and antioxidant parameters in β-thalassemia/Hb E patients treated with curcuminoids. Clinical Biochemistry, 43(4–5), 424–9. | www.sciencedirect.com/science/article/pii/S0009912009005074 |
Chapter 8 | 72 | Biswas, J., Sinha, D., Mukherjee, S., Roy, S., Siddiqi, M. and Roy, M. (2010). Curcumin protects DNA damage in a chronically arsenic-exposed population of West Bengal. Human & Experimental Toxicology, 29(6), 513–24. | journals.sagepub.com/doi/abs/10.1177/0960327109359020 |
Chapter 8 | 73 | Jiménez-Osorio, A. S. et al. (2016). The effect of dietary supplementation with curcumin on redox status and Nrf2 activation in patients with nondiabetic or diabetic proteinuric chronic kidney disease: A pilot study. Journal of Renal Nutrition, 26(4), 237–44. | www.sciencedirect.com/science/article/pii/S1051227616000145 |
Chapter 8 | 74 | Amalraj, A., Varma, K., Jacob, J., Divya, C., Kunnumakkara, A. B., Stohs, S. J. and Gopi, S. (2017). A novel highly bioavailable curcumin formulation improves symptoms and diagnostic indicators in rheumatoid arthritis patients: A randomized, double-blind, placebo-controlled, two-dose, three-arm, and parallel-group study. Journal of Medicinal Food, 20(10), 1022–30. | www.liebertpub.com/doi/abs/10.1089/jmf.2017.3930 |
Chapter 8 | 75 | Buettner, D. (2010). The Blue Zones: Lessons for living longer from the people who’ve lived the longest. National Geographic Books, Washington, D.C. | www.hachette.com.au/dan-buettner/the-blue-zones |
Chapter 8 | 76 | Buettner, D. and Skemp, S. (2016). Blue Zones: Lessons from the world’s longest lived. American Journal of Lifestyle Medicine, 10(5), 318–21. | journals.sagepub.com/doi/abs/10.1177/1559827616637066 |
Chapter 8 | 77 | Woo, J. et al. (2001). The Mediterranean score of dietary habits in Chinese populations in four different geographical areas. European Journal of Clinical Nutrition, 55(3), 215–20. | www.nature.com/articles/1601150 |
Chapter 8 | 78 | Kong, X. et al. (2015). Overview of the health care system in Hong Kong and its referential significance to mainland China. Journal of the Chinese Medical Association, 78(10), 569–73. | www.sciencedirect.com/science/article/pii/S1726490115001458 |
Chapter 8 | 79 | Senthilingam, M. (2018). This urban population is leading the world in life expectancy. CNN. 3 March 2018. | www.cnn.com/2018/03/02/health/hong-kong-world-longest-life-expectancy-longevity-intl/index.html |
Chapter 8 | 80 | Chan, R., Yu, B., Leung, J., Lee, J., Auyeung, T. W., Kwok, T. and Woo, J. (2019). How dietary patterns are related to inflammaging and mortality in community-dwelling older Chinese adults in Hong Kong: A prospective analysis. Journal of Nutrition, Health and Aging, 23(2), 181–94. | pubmed.ncbi.nlm.nih.gov/30697629 |
Chapter 8 | 81 | ecyY. Meat consumption growth in Hong Kong is alarming. Medium. 19 May 2019. | ecyy.medium.com/meat-consumption-growth-in-hong-kong-is-alarming-872e46bf40ca |
Chapter 8 | 82 | World Cancer Research Fund, American Institute for Cancer Research. (2018). Colorectal cancer statistics. WCRF. | www.wcrf.org/dietandcancer/cancer-trends/colorectal-cancer-statistics |
Chapter 8 | 83 | Centre for Health Protection, Department of Health, Government of Hong Kong. Colorectal Cancer. 20 May 2020. Centre for Health Protection. | www.chp.gov.hk/en/healthtopics/content/25/51.html |
Chapter 8 | 84 | Artaud-Wild, S. M., Connor, S. L., Sexton, G. and Connor, W. E. (1993). Differences in coronary mortality can be explained by differences in cholesterol and saturated fat intakes in 40 countries but not in France and Finland. A paradox. Circulation, 88(6), 2771–9. | pubmed.ncbi.nlm.nih.gov/8252690 |
Chapter 8 | 85 | Law, M. and Wald, N. (1999). Why heart disease mortality is low in France: The time lag explanation. BMJ (Clinical Research Ed.), 318(7196), 1471–6. | www.ncbi.nlm.nih.gov/pmc/articles/PMC1115846 |
Chapter 8 | 86 | Nestle, M. (1992). Wine and coronary heart disease. The Lancet, 340(8814), 314–15. | pubmed.ncbi.nlm.nih.gov/1353235 |
Chapter 8 | 87 | Key, T. J. et al. (1999). Mortality in vegetarians and nonvegetarians: Detailed findings from a collaborative analysis of 5 prospective studies. American Journal of Clinical Nutrition, 70(3), 516s–24s. | academic.oup.com/ajcn/article-abstract/70/3/516s/4714974 |
Chapter 8 | 88 | Huang, T., Yang, B., Zheng, J., Li, G., Wahlqvist, M. L. and Li, D. (2012). Cardiovascular disease mortality and cancer incidence in vegetarians: A meta-analysis and systematic review. Annals of Nutrition and Metabolism, 60(4), 233–40. | www.karger.com/Article/FullText/337301 |
Chapter 8 | 89 | Dinu, M., Abbate, R., Gensini, G. F., Casini, A. and Sofi, F. (2017). Vegetarian, vegan diets and multiple health outcomes: A systematic review with meta-analysis of observational studies. Critical Reviews in Food Science and Nutrition, 57(17), 3640–9. | www.tandfonline.com/doi/abs/10.1080/10408398.2016.1138447 |
Chapter 8 | 90 | Appleby, P. N., Crowe, F. L., Bradbury, K. E., Travis, R. C. and Key, T. J. (2016). Mortality in vegetarians and comparable nonvegetarians in the United Kingdom. American Journal of Clinical Nutrition, 103(1), 218–30. | academic.oup.com/ajcn/article-abstract/103/1/218/4569305 |
Chapter 8 | 91 | Kim, H., Caulfield, L. E. and Rebholz, C. M. (2018). Healthy plant-based diets are associated with lower risk of all-cause mortality in US adults. Journal of Nutrition, 148(4), 624–31. | academic.oup.com/jn/article-abstract/148/4/624/4965931 |
Chapter 8 | 92 | Fraser, G. E. (2003). Diet, Life Expectancy, and Chronic Disease: Studies of Seventh-day Adventists and other vegetarians. Oxford University Press, New York. | www.oup.com.au/books/others/9780195113242-diet,-life-expectancy,-and-chronic-disease |
Chapter 8 | 93 | Fraser, G. E. and Shavlik, D. J. (2001). Ten years of life: Is it a matter of choice? Archives of Internal Medicine, 161(13), 1645–52. | jamanetwork.com/journals/jamainternalmedicine/article-abstract/648593 |
Chapter 8 | 94 | Singh, P. N., Sabaté, J. and Fraser, G. E. (2003). Does low meat consumption increase life expectancy in humans? American Journal of Clinical Nutrition, 78(3), 526S–32S. | academic.oup.com/ajcn/article/78/3/526S/4689992 |
Chapter 8 | 95 | Shan, Z., Guo, Y., Hu, F. B., Liu, L. and Qi, Q. (2020). Association of low-carbohydrate and low-fat diets with mortality among US adults. JAMA Internal Medicine, 180(4), 513–23. | jamanetwork.com/journals/jamainternalmedicine/article-abstract/2759134 |
Chapter 8 | 96 | Seidelmann, S. B. et al. (2018). Dietary carbohydrate intake and mortality: A prospective cohort study and meta-analysis. The Lancet Public Health, 3(9), e419–28. | www.sciencedirect.com/science/article/pii/S246826671830135X |
Chapter 8 | 97 | Most, J., Tosti, V., Redman, L. M. and Fontana, L. (2017). Calorie restriction in humans: An update. Ageing Research Reviews, 39, 36–45. | www.sciencedirect.com/science/article/pii/S1568163716301830 |
Chapter 8 | 98 | McCay, C. M., Crowell, M. F. and Maynard, L. A. (1989). The effect of retarded growth upon the length of life span and upon the ultimate body size – 1935. Nutrition, 5(3), 155–72. | pubmed.ncbi.nlm.nih.gov/2520283 |
Chapter 8 | 99 | Fontana, L., Partridge, L and Longo, V. D. (2010). Extending healthy life span: From yeast to humans. Science, 328(5976), 321–6. | science.sciencemag.org/content/328/5976/321 |
Chapter 8 | 100 | Colman, R. J. et al. (2009). Caloric restriction delays disease onset and mortality in rhesus monkeys. Science, 325(5937), 201–4. | science.sciencemag.org/content/325/5937/201 |
Chapter 8 | 101 | Fontana, L. and Partridge, L. (2015). Promoting health and longevity through diet: From model organisms to humans. Cell, 161(1), 106–18. | www.sciencedirect.com/science/article/pii/S0092867415001865 |
Chapter 8 | 102 | Trepanowski, J. F. and Bloomer, R. J. (2010). The impact of religious fasting on human health. Nutrition Journal, 9(1), 57. | nutritionj.biomedcentral.com/articles/10.1186/1475-2891-9-57 |
Chapter 8 | 103 | Blue Zones. Okinawa, Japan – Secrets of the world’s longest-living women. Blue Zones. | www.bluezones.com/exploration/okinawa-japan |
Chapter 8 | 104 | Willcox, B. J. and Willcox, D. C. (2014). Caloric restriction, CR mimetics, and healthy aging in Okinawa: Controversies and clinical implications. Current Opinion in Clinical Nutrition and Metabolic Care, 17(1), 51. | www.ncbi.nlm.nih.gov/pmc/articles/pmc5403510 |
Chapter 8 | 105 | Willcox, B. J. et al. (2007). Caloric restriction, the traditional Okinawan diet, and healthy aging: The diet of the world’s longest‐lived people and its potential impact on morbidity and life span. Annals of the New York Academy of Sciences, 1114(1), 434–55. | s.put.re/edWLkDBZ.pdf |
Chapter 8 | 106 | Di Francesco, A., Di Germanio, C., Bernier, M. and de Cabo, R. (2018). A time to fast. Science, 362(6416), 770–5. | science.sciencemag.org/content/362/6416/770 |
Chapter 8 | 107 | Longo, V. D. and Mattson, M. P. (2014). Fasting: Molecular mechanisms and clinical applications. Cell Metabolism, 19(2), 181–92. | www.sciencedirect.com/science/article/pii/S1550413113005032 |
Chapter 8 | 108 | de Cabo, R. and Mattson, M. P. (2019). Effects of intermittent fasting on health, aging, and disease. New England Journal of Medicine, 381(26), 2541–51. | www.nejm.org/doi/full/10.1056/nejmra1905136 |
Chapter 8 | 109 | Sutton, E. F., Beyl, R., Early, K. S., Cefalu, W. T., Ravussin, E. and Peterson, C. M. (2018). Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell Metabolism, 27(6), 1212–21. | www.sciencedirect.com/science/article/pii/S1550413118302535 |
Chapter 8 | 110 | Harvie, M. et al. (2013). The effect of intermittent energy and carbohydrate restriction v. daily energy restriction on weight loss and metabolic disease risk markers in overweight women. British Journal of Nutrition, 110(8), 1534–47. | www.cambridge.org/core/journals/british-journal-of-nutrition/article/effect-of-intermittent-energy-and-carbohydrate-restriction-v-daily-energy-restriction-on-weight-loss-and-bolic-disease-risk-markers-in-overweight-women/BC03063A5D8E9446D5090DB083A4B226 |
Chapter 8 | 111 | Mitchell, S. J. et al. (2019). Daily fasting improves health and survival in male mice independent of diet composition and calories. Cell Metabolism, 29(1), 221–8. | www.sciencedirect.com/science/article/pii/S1550413118305126 |
Chapter 8 | 112 | Masoro, E. J. (2007). Role of hormesis in life extension by caloric restriction. Dose-Response, 5(2). | journals.sagepub.com/doi/abs/10.2203/dose-response.06-005.Masoro |
Chapter 8 | 113 | Hooper, P. L., Hooper, P. L., Tytell, M. and Vígh, L. (2010). Xenohormesis: Health benefits from an eon of plant stress response evolution. Cell Stress and Chaperones, 15(6), 761–70. | link.springer.com/article/10.1007/s12192-010-0206-x |
Chapter 8 | 114 | Barański, M. et al. (2014). Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: A systematic literature review and meta-analyses. British Journal of Nutrition, 112(5), 794–811. | www.cambridge.org/core/journals/british-journal-of-nutrition/article/higher-antioxidant-and-lower-cadmium-concentrations-and-lower-incidence-of-pesticide-residues-in-organically-grown-crops-a-systematic-literature-review-and-metaanalyses/33F09637EAE6C4ED119E0C4BFFE2D5B1 |
Chapter 8 | 115 | Suter, S. and Lucock, M. (2017). Xenohormesis: Applying evolutionary principles to contemporary health issues. Exploratory Research and Hypothesis in Medicine, 2(4), 79–85. | pdfs.semanticscholar.org/bebe/f8f14c1ccfa6f40a7d2cc96f9a4d0661b44f.pdf |
Chapter 8 | 116 | Saijo, R. and Takeda, Y. (1999). HPLC analysis of catechins in various kinds of green teas produced in Japan and abroad. Journal of the Japanese Society for Food Science and Technology, 46(3), 138–47. | www.jstage.jst.go.jp/article/nskkk1995/46/3/46_3_138/_pdf/-char/en |
Chapter 8 | 117 | Murakami, A. et al. (2005). Suppressive effects of Okinawan food items on free radical generation from stimulated leukocytes and identification of some active constituents: Implications for the prevention of inflammation-associated carcinogenesis. Asian Pacific Journal of Cancer Prevention, 6(4), 437. | pubmed.ncbi.nlm.nih.gov/16435988 |
Chapter 8 | 118 | Mattison, J. A. et al. (2012). Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature, 489(7415), 318–21. | www.nature.com/articles/nature11432 |
Chapter 8 | 119 | Anton, S. D. et al. (2018). Flipping the metabolic switch: Understanding and applying the health benefits of fasting. Obesity, 26(2), 254–68. | onlinelibrary.wiley.com/doi/abs/10.1002/oby.22065 |
Chapter 8 | 120 | Blackburn, E. and Epel, E. (2017). The Telomere Effect: A revolutionary approach to living younger, healthier, longer. Grand Central Publishing, New York. | www.hachette.com.au/elizabeth-blackburn-elissa-epel/the-telomere-effect-a-revolutionary-approach-to-living-younger-healthier-longer |
Chapter 8 | 121 | Lapham, K. et al. (2015). Automated assay of telomere length measurement and informatics for 100,000 subjects in the genetic epidemiology research on adult health and aging (GERA) cohort. Genetics, 200(4), 1061–72. | www.genetics.org/content/200/4/1061 |
Chapter 8 | 122 | Bekaert, S., De Meyer, T. and Van Oostveldt, P. (2005). Telomere attrition as ageing biomarker. Anticancer Research, 25(4), 3011–21. | pubmed.ncbi.nlm.nih.gov/16080560 |
Chapter 8 | 123 | Wentzensen, I. M., Mirabello, L., Pfeiffer, R. M. and Savage, S. A. (2011). The association of telomere length and cancer: A meta-analysis. Cancer Epidemiology and Prevention Biomarkers, 20(6), 1238–50. | cebp.aacrjournals.org/content/20/6/1238 |
Chapter 8 | 124 | Needham, B. L., Mezuk, B., Bareis, N., Lin, J., Blackburn, E. H. and Epel, E. S. (2015). Depression, anxiety and telomere length in young adults: Evidence from the National Health and Nutrition Examination Survey. Molecular Psychiatry, 20(4), 520. | www.nature.com/articles/mp201489 |
Chapter 8 | 125 | Haycock, P. C., Heydon, E. E., Kaptoge, S., Butterworth, A. S., Thompson, A. and Willeit, P. (2014). Leucocyte telomere length and risk of cardiovascular disease: Systematic review and meta-analysis. BMJ, 349, g4227. | www.bmj.com/content/349/bmj.g4227 |
Chapter 8 | 126 | Forero, D. A., González-Giraldo, Y., López-Quintero, C., Castro-Vega, L. J., Barreto, G. E. and Perry, G. (2016). Meta-analysis of telomere length in Alzheimer’s disease. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 71(8), 1069–73. | academic.oup.com/biomedgerontology/article-abstract/71/8/1069/2465837 |
Chapter 8 | 127 | Boccardi, V., Esposito, A., Rizzo, M. R., Marfella, R., Barbieri, M. and Paolisso, G. (2013). Mediterranean diet, telomere maintenance and health status among elderly. PLOS One, 8(4), e62781. | journals.plos.org/plosone/article?id=10.1371/journal.pone.0062781 |
Chapter 8 | 128 | Crous-Bou, M. et al. (2014). Mediterranean diet and telomere length in Nurses’ Health Study: Population based cohort study. BMJ, 349, g6674. | www.bmj.com/content/349/bmj.g6674 |
Chapter 8 | 129 | Lee, J. Y., Jun, N. R., Yoon, D., Shin, C. and Baik, I. (2015). Association between dietary patterns in the remote past and telomere length. European Journal of Clinical Nutrition, 69(9), 1048–52. | www.nature.com/articles/ejcn201558 |
Chapter 8 | 130 | Puterman, E., Lin, J., Blackburn, E., O’Donovan, A., Adler, N. and Epel, E. (2010). The power of exercise: Buffering the effect of chronic stress on telomere length. PLOS One, 5(5), e10837. | journals.plos.org/plosone/article?id=10.1371/journal.pone.0010837 |
Chapter 8 | 131 | Barry, V. W., Baruth, M., Beets, M. W., Durstine, J. L., Liu, J. and Blair, S. N. (2014). Fitness vs. fatness on all-cause mortality: A meta-analysis. Progress in Cardiovascular Diseases, 56(4), 382–90. | www.sciencedirect.com/science/article/pii/S0033062013001552 |
Chapter | Reference Number | Content | URL |
---|---|---|---|
Chapter 9 | 1 | Whitmee, S. et al. (2015). Safeguarding human health in the Anthropocene epoch: Report of The Rockefeller Foundation–Lancet Commission on planetary health. The Lancet, 386(10007), 1973–2028. | www.thelancet.com/journals/lancet/article/PIIS0140-6736(15)60901-1 |
Chapter 9 | 2 | Roser, M., Ortiz-Ospina, E. and Ritchie, H. (2019). Life expectancy. Our World in Data. | ourworldindata.org/life-expectancy |
Chapter 9 | 3 | The World Bank. (2020). Poverty – overview. The World Bank, Washington, D.C. | www.worldbank.org/en/topic/poverty/overview |
Chapter 9 | 4 | Roser, M. and Ortiz-Ospina, E. (2016). Global education. Our World in Data. | ourworldindata.org/global-education |
Chapter 9 | 5 | European Environment Agency. (2007). How is climate changing and how has it changed in the past? European Environment Agency. | www.eea.europa.eu/themes/climate/faq/how-is-climate-changing-and-how-has-it-changed-in-the-past |
Chapter 9 | 6 | Raphaely, T. and Marinova, D. (2014). Flexitarianism: Decarbonising through flexible vegetarianism. Renewable Energy, 67, 90–6. | www.sciencedirect.com/science/article/pii/S0960148113006083 |
Chapter 9 | 7 | Cleveland, D. A. and Gee, Q. (2017). Plant-based diets for mitigating climate change. In Mariotti, F. (ed.) Vegetarian and Plant-Based Diets in Health and Disease Prevention. Academic Press, London, 135–56. | www.medicosadventistas.org/wp-content/uploads/2018/09/Fran%C3%A7ois-Mariotti-Eds.-Vegetarian-and-Plant-Based-Diets-in-Health-and-Disease-Prevention-Academic-Press-2017.pdf |
Chapter 9 | 8 | De Ron, A. M., Sparvoli, F., Pueyo, J. J. and Bazile, D. (2017). Protein crops: Food and feed for the future. Frontiers in Plant Science, 8, 105. | www.frontiersin.org/articles/10.3389/fpls.2017.00105 |
Chapter 9 | 9 | Hawken, P. The Drawdown Review. Project Drawdown, San Francisco. | www.drawdown.org/drawdown-review |
Chapter 9 | 10 | Willett, W. et al. (2019). Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. The Lancet, 393(10170), 447–92. | www.thelancet.com/journals/lancet/article/PIIS0140-6736(18)31788-4 |
Chapter 9 | 11 | EAT. Healthy diets from sustainable food systems: Food Planet Health: Summary report of the EAT-Lancet Commission. | eatforum.org/content/uploads/2019/07/EAT-Lancet_Commission_Summary_Report.pdf |
Chapter 9 | 12 | Semba, R. D., de Pee, S., Kim, B., McKenzie, S., Nachman, K. and Bloem, M. W. (2020). Adoption of the ‘planetary health diet’ has different impacts on countries’ greenhouse gas emissions. Nature Food, 1(8), 481–4. | www.nature.com/articles/s43016-020-0128-4 |
Chapter 9 | 13 | Springmann, M., Godfray, H. C. J., Rayner, M. and Scarborough, P. (2016). Analysis and valuation of the health and climate change cobenefits of dietary change. Proceedings of the National Academy of Sciences, 113(15), 4146–51. | www.pnas.org/content/113/15/4146 |
Chapter 9 | 14 | UN Environment Programme. Improved climate action on food systems can deliver 20 percent of global emissions reductions needed by 2050. UN Environment Programme. 1 September 2020. | www.unenvironment.org/news-and-stories/press-release/improved-climate-action-food-systems-can-deliver-20-percent-global |
Chapter 9 | 15 | Chai, B. C., van der Voort, J. R., Grofelnik, K., Eliasdottir, H. G., Klöss, I. and Perez-Cueto, F. J. (2019). Which diet has the least environmental impact on our planet? A systematic review of vegan, vegetarian and omnivorous diets. Sustainability, 11(15), 4110. | www.mdpi.com/2071-1050/11/15/4110 |
Chapter 9 | 16 | Watts, N. et al. (2018). The 2018 report of the Lancet Countdown on health and climate change: Shaping the health of nations for centuries to come. The Lancet, 392(10163), 2479–514. | www.thelancet.com/journals/lancet/article/PIIS0140-6736(18)32594-7 |
Chapter 9 | 17 | Kaplan, J. O., Krumhardt, K. M., Ellis, E. C., Ruddiman, W. F., Lemmen, C. and Goldewijk, K. K. (2011). Holocene carbon emissions as a result of anthropogenic land cover change. The Holocene, 21(5), 775–91. | journals.sagepub.com/doi/abs/10.1177/0959683610386983 |
Chapter 9 | 18 | Leifeld, J. (2006). Soils as sources and sinks of greenhouse gases. Geological Society London Special Publications, 266(1), 23–44. | www.researchgate.net/publication/249551945_Soils_as_sources_and_sinks_of_greenhouse_gases |
Chapter 9 | 19 | Lemmen, C. (2009). World distribution of land cover changes during pre- and protohistoric times and estimation of induced carbon releases. Géomorphologie: Relief, processus, environnement, 15(4), 303–12. | journals.openedition.org/geomorphologie/7756 |
Chapter 9 | 20 | Ruddiman, W. F. (2003). The anthropogenic greenhouse era began thousands of years ago. Climatic Change, 61(3), 261–93. | link.springer.com/article/10.1023/B:CLIM.0000004577.17928.fa |
Chapter 9 | 21 | Ritchie, H. and Roser, M. (2020). CO₂ and greenhouse gas emissions. Our World in Data. | ourworldindata.org/co2-and-other-greenhouse-gas-emissions |
Chapter 9 | 22 | Borunda, A. Methane, explained. National Geographic. 23 January 2019. | www.nationalgeographic.com/environment/global-warming/methane |
Chapter 9 | 23 | Food and Agriculture Organization of the United Nations. Key facts and findings: By the numbers: GHG emissions by livestock. FAO. | www.fao.org/news/story/en/item/197623/icode |
Chapter 9 | 24 | Lindsey, R. (2020). Climate change: Atmospheric carbon dioxide. Climate.gov. | www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide |
Chapter 9 | 25 | Grossi, G., Goglio, P., Vitali, A. and Williams, A. G. (2019). Livestock and climate change: Impact of livestock on climate and mitigation strategies. Animal Frontiers, 9(1), 69–76. | academic.oup.com/af/article-abstract/9/1/69/5173494 |
Chapter 9 | 26 | Ritchie, H. and Roser, M. (2020). Atmospheric concentrations. Our World in Data. | ourworldindata.org/atmospheric-concentrations |
Chapter 9 | 27 | United States Environmental Protection Agency. Greenhouse gas emissions: Understanding global warming potentials. | www.epa.gov/ghgemissions/understanding-global-warming-potentials |
Chapter 9 | 28 | Schurer, A. P., Mann, M. E., Hawkins, E., Tett, S. F. and Hegerl, G. C. (2017). Importance of the pre-industrial baseline for likelihood of exceeding Paris goals. Nature Climate Change, 7(8), 563–7. | www.nature.com/articles/nclimate3345 |
Chapter 9 | 29 | Intergovernmental Panel on Climate Change. (2019). Global warming of 1.5°C: Summary for policymakers, technical summary and frequently asked questions. IPCC, Geneva. | www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Summary_Volume_Low_Res.pdf |
Chapter 9 | 30 | Buis, A. A degree of concern: Why global temperatures matter. NASA: Global Climate Change. | climate.nasa.gov/news/2865/a-degree-of-concern-why-global-temperatures-matter |
Chapter 9 | 31 | NASA Science. Venus. NASA Science: Solar system exploration. | solarsystem.nasa.gov/planets/venus/overview |
Chapter 9 | 32 | Intergovernmental Panel on Climate Change. Special report: Global warming of 1.5°C. IPCC, Geneva. | www.ipcc.ch/sr15 |
Chapter 9 | 33 | Reuters Staff. Global temperatures on track for 3–5 degree rise by 2100: U.N. Reuters. 29 November 2018. | www.reuters.com/article/us-climate-change-un-idUSKCN1NY186 |
Chapter 9 | 34 | Spratt, D. and Dunlop, I. (2018). What Lies Beneath: The understatement of existential climate risk. Breakthrough: National Centre for Climate Restoration, Melbourne. | climateextremes.org.au/wp-content/uploads/2018/08/What-Lies-Beneath-V3-LR-Blank5b15d.pdf |
Chapter 9 | 35 | Toensmeier, E. et al. (2020). Farming our way out of the climate crisis: Changing our land use, agricultural practices, and food system offers numerous opportunities to reduce greenhouse gas emissions, sequester atmospheric carbon, and help address climate change. Project Drawdown, San Francisco. | drawdown.org/sites/default/files/pdfs/DrawdownPrimer_FoodAgLandUse_Dec2020_01b.pdf |
Chapter 9 | 36 | Intergovernmental Panel on Climate Change. (2014). Climate Change 2014: Synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Core writing team Pachauri, R.K. and Meyer, L.A. (eds). IPCC, Geneva. | www.ipcc.ch/site/assets/uploads/2018/02/SYR_AR5_FINAL_full.pdf |
Chapter 9 | 37 | Harwatt, H. (2019). Including animal to plant protein shifts in climate change mitigation policy: A proposed three-step strategy. Climate Policy, 19(5), 533–41. | www.tandfonline.com/doi/abs/10.1080/14693062.2018.1528965 |
Chapter 9 | 38 | Levin, K. and Davis, C. What does ‘net-zero emissions’ mean? 6 common questions, answered. World Resources Institute. 17 September 2019. | www.wri.org/blog/2019/09/what-does-net-zero-emissions-mean-6-common-questions-answered |
Chapter 9 | 39 | Cozzi, L. and Gould, T. What would it take to limit the global temperature rise to 1.5°C? IEA. 17 November 2019. | www.iea.org/commentaries/what-would-it-take-to-limit-the-global-temperature-rise-to-15c |
Chapter 9 | 40 | Intergovernmental Panel on Climate Change. (2019). Summary for policymakers. In: Climate Change and Land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. IPCC, Geneva. | www.ipcc.ch/site/assets/uploads/sites/4/2020/02/SPM_Updated-Jan20.pdf |
Chapter 9 | 41 | Smith, P. et al. (2014). Agriculture, forestry and other land use (AFOLU). In Edenhofer, O. et al (eds) Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York. | www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_chapter11.pdf |
Chapter 9 | 42 | Livestock, Environment and Development (LEAD) Initiative and Food and Agriculture Organization of the United Nations (FAO). (2006). Livestock’s Long Shadow: Environmental issues and options. Food and Agriculture Organization of the United Nations (FAO), Rome. | www.fao.org/3/a0701e/a0701e.pdf |
Chapter 9 | 43 | The Economist – Graphic Detail. Counting chickens: Where the world’s livestock lives. The Economist. 27 July 2011. | stage.economist.com/graphic-detail/2011/07/27/counting-chickens |
Chapter 9 | 44 | Garnett, T. et al. (2017). Grazed and Confused? Ruminating on cattle, grazing systems, methane, nitrous oxide, the soil carbon sequestration question – and what it all means for greenhouse gas emissions. Food Climate Research Network, University of Oxford. | www.tabledebates.org/sites/default/files/2020-10/fcrn_gnc_report.pdf |
Chapter 9 | 45 | Garnett, T. Why eating grass-fed beef isn’t going to help fight climate change. The Conversation. 3 October 2017. | theconversation.com/why-eating-grass-fed-beef-isnt-going-to-help-fight-climate-change-84237 |
Chapter 9 | 46 | Shindell, D. et al. (2012). Simultaneously mitigating near-term climate change and improving human health and food security. Science, 335(6065), 183–9. | science.sciencemag.org/content/335/6065/183 |
Chapter 9 | 47 | Risku-Norja, H., Kurppa, S. and Helenius, J. (2009). Dietary choices and greenhouse gas emissions – assessment of impact of vegetarian and organic options at national scale. Progress in Industrial Ecology, an International Journal, 6(4), 340–54. | www.inderscienceonline.com/doi/abs/10.1504/PIE.2009.032323 |
Chapter 9 | 48 | Scarborough, P., Appleby, P. N., Mizdrak, A., Briggs, A. D., Travis, R. C., Bradbury, K. E. and Key, T. J. (2014). Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the UK. Climatic Change, 125(2), 179–92. | link.springer.com/article/10.1007/s10584-014-1169-1 |
Chapter 9 | 49 | Poore, J. and Nemecek, T. (2018). Reducing food’s environmental impacts through producers and consumers. Science, 360(6392), 987–92. | science.sciencemag.org/content/360/6392/987 |
Chapter 9 | 50 | Ritchie, H. (2020). You want to reduce the carbon footprint of your food? Focus on what you eat, not whether your food is local. Our World in Data. | ourworldindata.org/food-choice-vs-eating-local |
Chapter 9 | 51 | Ritchie, H. (2017). Is organic really better for the environment than conventional agriculture? Our World in Data. | ourworldindata.org/is-organic-agriculture-better-for-the-environment |
Chapter 9 | 52 | Kim, B. F. et al. (2020). Country-specific dietary shifts to mitigate climate and water crises. Global Environmental Change, 62, 101926. | www.sciencedirect.com/science/article/pii/S0959378018306101 |
Chapter 9 | 53 | Pieper, M., Michalke, A. and Gaugler, T. (2020). Calculation of external climate costs for food highlights inadequate pricing of animal products. Nature Communications, 11(1), 1–13. | www.nature.com/articles/s41467-020-19474-6 |
Chapter 9 | 54 | Poore, J. and Nemecek, T. (2018). Additional calculations by Our World in Data. Greenhouse gas emissions per 100 grams of protein. Our World in Data. | ourworldindata.org/grapher/ghg-per-protein-poore |
Chapter 9 | 55 | Godfray, H. C. J. et al. (2018). Meat consumption, health, and the environment. Science, 361(6399). | science.sciencemag.org/content/361/6399/eaam5324 |
Chapter 9 | 56 | Sakadevan, K. and Nguyen, M. L. (2017). Livestock production and its impact on nutrient pollution and greenhouse gas emissions. Advances in Agronomy, 141, 147–84. | www.sciencedirect.com/science/article/pii/S0065211316301080 |
Chapter 9 | 57 | Nordborg, M. (2016). Holistic management – a critical review of Allan Savory’s grazing method. SLU/EPOK – Centre for Organic Food & Farming and Chalmers. | www.researchgate.net/publication/309589057_Holistic_management_-_a_critical_review_of_Allan_Savory's_grazing_method |
Chapter 9 | 58 | Hayek, M. N. and Garrett, R. D. (2018). Nationwide shift to grass-fed beef requires larger cattle population. Environmental Research Letters, 13(8), 084005. | iopscience.iop.org/article/10.1088/1748-9326/aad401 |
Chapter 9 | 59 | Hill, S and Carter, N. (2021). Can holistic grazing reverse climate change? A review of Kiss the Ground. Plant Proof. | plantproof.com/can-holistic-grazing-reverse-climate-change |
Chapter 9 | 60 | Ritchie, H. and Roser, M. (2020). Environmental impacts of food production. Our World in Data. | ourworldindata.org/environmental-impacts-of-food |
Chapter 9 | 61 | Searchinger, T. D., Wirsenius, S., Beringer, T. and Dumas, P. (2019). Publisher correction: Assessing the efficiency of changes in land use for mitigating climate change. Nature, 565(7740), E9. | www.nature.com/articles/s41586-018-0863-y |
Chapter 9 | 62 | Daryanto, S., Eldridge, D. J. and Throop, H. L. (2013). Managing semi-arid woodlands for carbon storage: Grazing and shrub effects on above- and belowground carbon. Agriculture, Ecosystems & Environment, 169, 1–11. | www.sciencedirect.com/science/article/pii/S0167880913000285 |
Chapter 9 | 63 | Hayek, M. N. (2019). Underestimates of US emissions and global implications for industrializing animal agriculture: A guidance memo for the Tiny Beam Fund. | www.issuelab.org/resources/36458/36458.pdf |
Chapter 9 | 64 | Harwatt, H., Ripple, W. J., Chaudhary, A., Betts, M. G. and Hayek, M. N. (2020). Scientists call for renewed Paris pledges to transform agriculture. The Lancet Planetary Health, 4(1), e9–10. | www.thelancet.com/journals/lanplh/article/PIIS2542-5196(19)30245-1 |
Chapter 9 | 65 | Minnemeyer, S., Harris, N. and Payne, O. Conserving forests could cut carbon emissions as much as getting rid of every car on Earth. World Resources Institute. 27 November 2017. | www.wri.org/blog/2017/11/conserving-forests-could-cut-carbon-emissions-much-getting-rid-every-car-earth |
Chapter 9 | 66 | Cox, L. Beef industry linked to 94% of land clearing in Great Barrier Reef catchments. Guardian Australia. 8 August 2019. | www.theguardian.com/australia-news/2019/aug/08/beef-industry-linked-to-94-of-land-clearing-in-great-barrier-reef-catchments |
Chapter 9 | 67 | Griscom, B. W. et al. (2017). Natural climate solutions. Proceedings of the National Academy of Sciences, 114(44), 11645–50. | www.pnas.org/content/114/44/11645 |
Chapter 9 | 68 | Australia’s Chief Scientist. Which plants store more carbon in Australia: Forests or grasses? Australian Government, Canberra. 1 December 2009. | www.chiefscientist.gov.au/2009/12/which-plants-store-more-carbon-in-australia-forests-or-grasses |
Chapter 9 | 69 | Ritchie, H. and Roser, M. (2020). Environmental impacts of food production: Land Use. Our World in Data. | ourworldindata.org/environmental-impacts-of-food#land-use |
Chapter 9 | 70 | Tubiello, F. N., Salvatore, M., Rossi, S., Ferrara, A., Fitton, N. and Smith, P. (2013). The FAOSTAT database of greenhouse gas emissions from agriculture. Environmental Research Letters, 8(1), 015009. | iopscience.iop.org/article/10.1088/1748-9326/8/1/015009 |
Chapter 9 | 71 | Food and Agriculture Organization of the United Nations. Livestock primary. FAOSTAT. | www.fao.org/faostat/en/#data/QL |
Chapter 9 | 72 | Bar-On, Y. M., Phillips, R. and Milo, R. (2018). The biomass distribution on Earth. Proceedings of the National Academy of Sciences, 115(25), 6506–11. | www.pnas.org/content/115/25/6506 |
Chapter 9 | 73 | Hempson, G. P., Archibald, S. and Bond, W. J. (2017). The consequences of replacing wildlife with livestock in Africa. Scientific Reports, 7(1), 1–10. | www.nature.com/articles/s41598-017-17348-4 |
Chapter 9 | 74 | Bakker, E. S. and Svenning, J. C. (2018). Trophic rewilding: Impact on ecosystems under global change. Philosophical Transactions of the Royal Society B: Biological Sciences, 373, 20170432. | royalsocietypublishing.org/doi/full/10.1098/rstb.2017.0432 |
Chapter 9 | 75 | Cromsigt, J. P., te Beest, M., Kerley, G. I., Landman, M., le Roux, E. and Smith, F. A. (2018). Trophic rewilding as a climate change mitigation strategy? Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1761), 20170440. | royalsocietypublishing.org/doi/abs/10.1098/rstb.2017.0440 |
Chapter 9 | 76 | Vandette, K. Trophic rewilding may be an effective tool to fight climate change. Earth.com News. 23 October 2018. | www.earth.com/news/trophic-rewilding-climate-change |
Chapter 9 | 77 | Tilman, D., Clark, M., Williams, D. R., Kimmel, K., Polasky, S. and Packer, C. (2017). Future threats to biodiversity and pathways to their prevention. Nature, 546(7656), 73–81. | www.nature.com/articles/nature22900 |
Chapter 9 | 78 | Loken, B. et al. (2020). Bending the Curve: The restorative power of planet-based diets. WWF, Gland. | wwfeu.awsassets.panda.org/downloads/bending_the_curve__the_restorative_power_of_planet_based_diets_full_report_final_pdf.pdf |
Chapter 9 | 79 | Rewilding Britain. (2019). Rewilding and climate breakdown: How restoring nature can help decarbonise the UK. Rewilding Britain. | www.rewildingbritain.org.uk/support-rewilding/our-campaigns-and-issues/rewilding-vs-climate-breakdown |
Chapter 9 | 80 | Department of Industry, Science, Energy and Resources. Australia’s climate change strategies. Australian Government, Canberra. | www.industry.gov.au/strategies-for-the-future/australias-climate-change-strategies |
Chapter 9 | 81 | Crowther, T. W. et al. (2015). Mapping tree density at a global scale. Nature, 525(7568), 201–5. | www.nature.com/articles/nature14967 |
Chapter 9 | 82 | Machovina, B., Feeley, K. J. and Ripple, W. J. (2015). Biodiversity conservation: The key is reducing meat consumption. Science of the Total Environment, 536, 419–31. | www.sciencedirect.com/science/article/pii/S0048969715303697 |
Chapter 9 | 83 | Ritchie, H. Drivers of deforestation: Is palm oil responsible for deforestation? Our World in Data. | Ritchie, H. Drivers of deforestation: Is palm oil responsible for deforestation? Our World in Data. |
Chapter 9 | 84 | WWF. (2014). The growth of soy: Impacts and solutions. WWF International, Gland. | wwfeu.awsassets.panda.org/downloads/wwf_soy_report_final_feb_4_2014.pdf |
Chapter 9 | 85 | Ritchie, H. Soy. Our World in Data. | ourworldindata.org/soy |
Chapter 9 | 86 | Borunda, A. The science connecting wildfires to climate change. National Geographic. 17 September 2020. | www.nationalgeographic.com/science/2020/09/climate-change-increases-risk-fires-western-us |
Chapter 9 | 87 | Phillips, N. Climate change made Australia’s devastating fire season 30% more likely. Nature. 4 March 2020. | www.nature.com/articles/d41586-020-00627-y |
Chapter 9 | 88 | Wood, J. Costa Rica has doubled its tropical rainforests in just a few decades. Here’s how. World Economic Forum. 13 June 2019. | www.weforum.org/agenda/2019/06/costa-rica-has-doubled-its-tropical-rainforests-in-just-a-few-decades-here-s-how |
Chapter 9 | 89 | Lutz, S. J., Pearson, H., Vatter, J. and Bhakta, D. (2018). Oceanic Blue Carbon: How marine life can help to combat climate change. GRID-Arendal. | grid-arendal.maps.arcgis.com/apps/Cascade/index.html?appid=05f6dc47c20a41d8a0df68c0c99cc2f2 |
Chapter 9 | 90 | GRID-Arendal. Fish carbon: Exploring marine vertebrate carbon services. 6 November 2014. | www.grida.no/publications/172 |
Chapter 9 | 91 | Lavery, T. J. et al. (2010). Iron defecation by sperm whales stimulates carbon export in the Southern Ocean. Proceedings of the Royal Society B: Biological Sciences, 277(1699), 3527–31. | royalsocietypublishing.org/doi/abs/10.1098/rspb.2010.0863 |
Chapter 9 | 92 | Pershing, A. J., Christensen, L. B., Record, N. R., Sherwood, G. D. and Stetson, P. B. (2010). The impact of whaling on the ocean carbon cycle: Why bigger was better. PLOS One, 5(8), e12444. | journals.plos.org/plosone/article?id=10.1371/journal.pone.0012444 |
Chapter 9 | 93 | Wilmers, C. C., Estes, J. A., Edwards, M., Laidre, K. L. and Konar, B. (2012). Do trophic cascades affect the storage and flux of atmospheric carbon? An analysis of sea otters and kelp forests. Frontiers in Ecology and the Environment, 10(8), 409–15. | esajournals.onlinelibrary.wiley.com/doi/abs/10.1890/110176 |
Chapter 9 | 94 | Davison, P. C., Checkley Jr, D. M., Koslow, J. A. and Barlow, J. (2013). Carbon export mediated by mesopelagic fishes in the northeast Pacific Ocean. Progress in Oceanography, 116, 14–30. | www.sciencedirect.com/science/article/pii/S0079661113000554 |
Chapter 9 | 95 | Parker, L. The Great Pacific Garbage Patch isn’t what you think it is. National Geographic. 22 March 2018. | www.nationalgeographic.com/news/2018/03/great-pacific-garbage-patch-plastics-environment |
Chapter 9 | 96 | Stokstad, E. Fishing fleets have doubled since 1950 – but they’re having a harder time catching fish. Science. 27 May 2019. | www.sciencemag.org/news/2019/05/fishing-fleets-have-doubled-1950-theyre-having-harder-time-catching-fish |
Chapter 9 | 97 | Gibbens, S. Less than 3 percent of the ocean is ‘highly protected’. National Geographic. 25 September 2019. | www.nationalgeographic.com/environment/2019/09/paper-parks-undermine-marine-protected-areas |
Chapter 9 | 98 | Pusceddu, A., Bianchelli, S., Martín, J., Puig, P., Palanques, A., Masqué, P. and Danovaro, R. (2014). Chronic and intensive bottom trawling impairs deep-sea biodiversity and ecosystem functioning. Proceedings of the National Academy of Sciences, 111(24), 8861–6. | www.pnas.org/content/111/24/8861 |
Chapter 9 | 99 | Puig, P. et al. (2012). Ploughing the deep sea floor. Nature, 489(7415), 286–9. | www.nature.com/articles/nature11410 |
Chapter 9 | 100 | Kituyi, M. and Thomson, P. 90% of fish stocks are used up – fisheries subsidies must stop emptying the ocean. World Economic Forum. 13 July 2018. | www.weforum.org/agenda/2018/07/fish-stocks-are-used-up-fisheries-subsidies-must-stop |
Chapter 9 | 101 | Climate change seeps into the sea. NASA: Jet Propulsion Laboratory: California Institute of Technology. | www.jpl.nasa.gov/news/news.php?feature=1912 |
Chapter 9 | 102 | Munday, P. L., Dixson, D. L., McCormick, M. I., Meekan, M., Ferrari, M. C. and Chivers, D. P. (2010). Replenishment of fish populations is threatened by ocean acidification. Proceedings of the National Academy of Sciences, 107(29), 12930–4. | www.pnas.org/content/107/29/12930 |
Chapter 9 | 103 | James, L. E. Half of the Great Barrier Reef is dead. National Geographic. August 2018. | www.nationalgeographic.com/magazine/2018/08/explore-atlas-great-barrier-reef-coral-bleaching-map-climate-change |
Chapter 9 | 104 | Prada, F. et al. (2017). Ocean warming and acidification synergistically increase coral mortality. Scientific Reports, 7(1), 1–10. | www.nature.com/articles/srep40842 |
Chapter 9 | 105 | Compassion in World Farming. Until the seas run dry: How industrial aquaculture is plundering the oceans. Ecohustler. 17 April 2019. | ecohustler.com/article/until-the-seas-run-dry-how-industrial-aquaculture-is-plundering-the-oceans |
Chapter 9 | 106 | Salyer, S. J., Silver, R., Simone, K. and Barton Behravesh, C. (2017). Prioritizing zoonoses for global health capacity building – Themes from One Health Zoonotic Disease workshops in 7 countries, 2014–2016. Emerging Infectious Diseases, 23(13), S55–64. | www.ncbi.nlm.nih.gov/pmc/articles/PMC5711306 |
Chapter 9 | 107 | Daszak, P. et al. (2006). The emergence of Nipah and Hendra virus: Pathogen dynamics across a wildlife-livestock-human continuum. In Collinge, S. K. and Ray, C. Disease Ecology: Community structure and pathogen dynamics. Oxford University Press, Oxford. | oxford.universitypressscholarship.com/view/10.1093/acprof:oso/9780198567080.001.0001/acprof-9780198567080-chapter-13 |
Chapter 9 | 108 | Agriculture Victoria. (2021). Hendra virus. Victorian Government Department of Jobs, Precincts and Regions. | agriculture.vic.gov.au/biosecurity/animal-diseases/horse-diseases/hendra-virus |
Chapter 9 | 109 | Reperant, L. A., Kuiken, T. and Osterhaus, A. D. (2012). Influenza viruses: From birds to humans. Human Vaccines & Immunotherapeutics, 8(1), 7–16. | www.tandfonline.com/doi/abs/10.4161/hv.8.1.18672 |
Chapter 9 | 110 | Dulaney, M. The next pandemic is coming – and sooner than we think, thanks to changes to the environment. ABC News. 7 June 2020. | www.abc.net.au/news/science/2020-06-07/a-matter-of-when-not-if-the-next-pandemic-is-around-the-corner/12313372 |
Chapter 9 | 111 | Jones, B. A. et al. (2013). Zoonosis emergence linked to agricultural intensification and environmental change. Proceedings of the National Academy of Sciences, 110(21), 8399–404. | www.pnas.org/content/110/21/8399 |
Chapter 9 | 112 | Weber, C. L. and Matthews, H. S. (2008). Food-miles and the relative climate impacts of food choices in the United States. Environmental Science & Technology, 42, 3508–13. | pubs.acs.org/doi/abs/10.1021/es702969f |
Chapter 9 | 113 | Ritchie, H. (2020). Less meat is nearly always better than sustainable meat, to reduce your carbon footprint. Our World in Data. | ourworldindata.org/less-meat-or-sustainable-meat |
Chapter 9 | 114 | Clune, S., Crossin, E. and Verghese, K. (2017). Systematic review of greenhouse gas emissions for different fresh food categories. Journal of Cleaner Production, 140, 766–83. | www.sciencedirect.com/science/article/pii/S0959652616303584 |
Chapter 9 | 115 | Clark, M. and Tilman, D. (2017). Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environmental Research Letters, 12(6), 064016. | iopscience.iop.org/article/10.1088/1748-9326/aa6cd5/meta |
Chapter 9 | 116 | Garcia-Franco, N., Albaladejo, J., Almagro, M. and Martínez-Mena, M. (2015). Beneficial effects of reduced tillage and green manure on soil aggregation and stabilization of organic carbon in a Mediterranean agroecosystem. Soil and Tillage Research, 153, 66–75. | www.sciencedirect.com/science/article/pii/S0167198715001130 |
Chapter 9 | 117 | Eisenbach, L. D. et al. (2019). Effect of biocyclic humus soil on yield and quality parameters of processing tomato (Lycopersicon esculentum Mill.). Bulletin UASVM Horticulture, 76(1). | www.researchgate.net/publication/333720652_Effect_of_Biocyclic_Humus_Soil_on_Yield_and_Quality_Parameters_of_Processing_Tomato_Lycopersicon_esculentum_Mill |
Chapter 9 | 118 | Animals Australia. What does free range really mean? Animals Australia. 22 July 2016. | animalsaustralia.org/features/what-does-free-range-really-mean.php |
Chapter 9 | 119 | RSPCA. (2020). What happens with male chicks in the egg industry? RSPCA Knowledgebase. | kb.rspca.org.au/knowledge-base/what-happens-with-male-chicks-in-the-egg-industry |
Chapter 9 | 120 | Stockholm Resilience Centre. The nine planetary boundaries. Stockholm University. | www.stockholmresilience.org/research/planetary-boundaries/planetary-boundaries/about-the-research/the-nine-planetary-boundaries.html |
Chapter 9 | 121 | Voiland, A. Finding new ways to feed the world. NASA Global Climate Change. 12 April 2018. | climate.nasa.gov/blog/2711/finding-new-ways-to-feed-the-world |
Chapter 9 | 122 | Campbell, B. M. et al. (2016). Reducing risks to food security from climate change. Global Food Security, 11, 34–43. | www.sciencedirect.com/science/article/pii/S2211912415300262 |
Chapter 9 | 123 | Bongaarts, J. (2019). Special Report on Climate Change and Land Use. Intergovernmental Panel on Climate Change, 2018. Population and Development Review, 45(4), 936–7. | onlinelibrary.wiley.com/doi/abs/10.1111/padr.12306 |
Chapter 9 | 124 | Leahy, S. World food crisis looms if carbon emissions go unchecked, UN says. National Geographic. 8 August 2019. | www.nationalgeographic.com/environment/2019/08/ipcc-un-food-security |
Chapter 9 | 125 | World Health Organization. Drinking-water. WHO Newsroom. 14 June 2019. | www.who.int/news-room/fact-sheets/detail/drinking-water |
Chapter 9 | 126 | Foley, J. A five-step plan to feed the world. National Geographic. | www.nationalgeographic.com/foodfeatures/feeding-9-billion |
Chapter 9 | 127 | Cassidy, E. S., West, P. C., Gerber, J. S. and Foley, J. A. (2013). Redefining agricultural yields: From tonnes to people nourished per hectare. Environmental Research Letters, 8(3), 034015. | iopscience.iop.org/article/10.1088/1748-9326/8/3/034015 |
Chapter 9 | 128 | World Health Organization. World hunger is still not going down after three years and obesity is still growing – UN report. WHO Newsroom. 15 July 2019. | www.who.int/news-room/detail/15-07-2019-world-hunger-is-still-not-going-down-after-three-years-and-obesity-is-still-growing-un-report |
Chapter 9 | 129 | United Nations Children’s Fund (UNICEF), World Health Organization, International Bank for Reconstruction and Development/The World Bank. (2018). Levels and trends in child malnutrition: Key findings of the 2018 Edition of the Joint Child Malnutrition Estimates. World Health Organization, Geneva. | www.who.int/nutgrowthdb/2018-jme-brochure.pdf |
Chapter 9 | 130 | Food and Agriculture Organization of the United Nations. (2013). Food wastage footprint: Impacts on natural resources: Summary report. FAO. | www.fao.org/3/i3347e/i3347e.pdf |
Chapter 9 | 131 | Ritchie, H. (2020). Food waste is responsible for 6% of global greenhouse gas emissions. Our World in Data. | ourworldindata.org/food-waste-emissions |
Chapter 9 | 132 | Climate Council. (2016). From farm to plate to the atmosphere: Food-related emissions. Climate Council. | www.climatecouncil.org.au/from-farm-to-plate-to-the-atmosphere-reducing-your-food-related-emissions |
Chapter 9 | 133 | United States Environmental Protection Agency. Reducing the impact of wasted food by feeding the soil and composting. EPA. | www.epa.gov/sustainable-management-food/reducing-impact-wasted-food-feeding-soil-and-composting |
Chapter 9 | 134 | Hill, S. (2021). Composting 101. Plant Proof. | plantproof.com/composting-101 |
Chapter 9 | 135 | Frankel, T. C. New NASA data show how the world is running out of water. Washington Post. 17 June 2015. | www.washingtonpost.com/news/wonk/wp/2015/06/16/new-nasa-studies-show-how-the-world-is-running-out-of-water |
Chapter 9 | 136 | Hoekstra, A. Y. and Mekonnen, M. M. (2012). The water footprint of humanity. Proceedings of the National Academy of Sciences, 109(9), 3232–7. | www.pnas.org/content/109/9/3232 |
Chapter 9 | 137 | Jägerskog, A. and Jønch Clausen, T. (eds). (2012). Feeding a Thirsty World: Challenges and opportunities for a water and food secure future. Report No. 31. SIWI, Stockholm. | www.siwi.org/wp-content/uploads/2015/09/Feeding_a_thirsty_world_2012worldwaterweek_report_31.pdf |
Chapter 9 | 138 | Georgia Pacific Corporation. Water & Forests: The role trees play in water quality. US Forest Service. | www.fs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb5269813.pdf |
Chapter 9 | 139 | Ilstedt, U. et al. (2016). Intermediate tree cover can maximize groundwater recharge in the seasonally dry tropics. Scientific Reports, 6, 21930. | www.nature.com/articles/srep21930 |
Chapter 9 | 140 | Ritchie, H. and Roser, M. (2018). Water use and stress. Our World in Data. | ourworldindata.org/water-use-stress |
Chapter 9 | 141 | UN News. World faces ‘climate apartheid’ risk, 120 more million in poverty: UN expert. UN News. 25 June 2019. | news.un.org/en/story/2019/06/1041261 |
Chapter 9 | 142 | McDonald, M. How to answer the argument that Australia’s emissions are too small to make a difference. The Conversation. 18 June 2019. | theconversation.com/how-to-answer-the-argument-that-australias-emissions-are-too-small-to-make-a-difference-118825 |
Chapter 9 | 143 | Ritchie, H. and Roser, M. (2017). Meat and Dairy Production. Our World in Data. | ourworldindata.org/meat-production |
Chapter 9 | 144 | OECD.Stat. Greenhouse gas emissions. Organisation for Economic Co-Operation and Development. | stats.oecd.org/Index.aspx?DataSetCode=AIR_GHG |
Chapter 9 | 145 | Slezak, M. ‘Global deforestation hotspot’: 3m hectares of Australian forest to be lost in 15 years. Guardian Australia. 5 March 2018. | www.theguardian.com/environment/2018/mar/05/global-deforestation-hotspot-3m-hectares-of-australian-forest-to-be-lost-in-15-years |
Chapter 9 | 146 | Behrens, P., Kiefte-de Jong, J. C., Bosker, T., Rodrigues, J. F., De Koning, A. and Tukker, A. (2017). Evaluating the environmental impacts of dietary recommendations. Proceedings of the National Academy of Sciences, 114(51), 13412–17. | www.pnas.org/content/114/51/13412 |
Chapter 9 | 147 | Hutfilter, U. F. et al. (2019). Australia’s vehicle fleet – dirty and falling further behind. Climate Analytics. | climateanalytics.org/media/australiaclimatefactsheets2019-transportsector-climateanalytics.pdf |
Chapter 9 | 148 | Henriques-Gomes, L. Transport emissions continue to rise as Australia lags behind other nations. Guardian Australia. 13 September 2018. | www.theguardian.com/environment/2018/sep/13/transport-emissions-continue-to-rise-as-australia-lags-behind-other-nations |
Chapter 9 | 149 | Climate Analytics. Australia on track to become one of the world’s major climate polluters. Climate Analytics. 8 July 2019. | climateanalytics.org/latest/australia-on-track-to-become-one-of-the-worlds-major-climate-polluters |
Chapter 9 | 150 | Ritchie, H. (2017). How do we reduce antibiotic resistance from livestock? Our World in Data. | ourworldindata.org/antibiotic-resistance-from-livestock |
Chapter 9 | 151 | Van Boeckel, T. P. et al. (2017). Reducing antimicrobial use in food animals. Science, 357(6358), 1350–2. | science.sciencemag.org/content/357/6358/1350 |
Chapter 9 | 152 | Van Boeckel, T. P. et al. (2019). Global trends in antimicrobial resistance in animals in low-and middle-income countries. Science, 365(6459), eaaw1944. | science.sciencemag.org/content/365/6459/eaaw1944 |
Chapter 9 | 153 | The Review on Antimicrobial Resistance. (2014). Antimicrobial Resistance: Tackling a crisis for the health and wealth of nations. Review on Antimicrobial Resistance. | amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf |
Chapter 9 | 154 | The Review on Antimicrobial Resistance. (2016). Tackling drug-resistant infections globally: Final report and recommendations. Review on Antimicrobial Resistance. | amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf |
Chapter 9 | 155 | World Health Organization. Antibiotic resistance. WHO Newsroom. 31 July 2020. | www.who.int/news-room/fact-sheets/detail/antibiotic-resistance |
Chapter 9 | 156 | World Health Organization. Stop using antibiotics in healthy animals to prevent the spread of antibiotic resistance. WHO Newsroom. 7 November 2017. | www.who.int/news-room/detail/07-11-2017-stop-using-antibiotics-in-healthy-animals-to-prevent-the-spread-of-antibiotic-resistance |
Chapter 9 | 157 | European Academies’ Science Advisory Council, Leopoldina – Nationale Akademie der Wissenschaften. New data confirm increased frequency of extreme weather events. ScienceDaily. 21 March 2018. | www.sciencedaily.com/releases/2018/03/180321130859.htm |
Chapter 9 | 158 | NASA: Global Climate Change. Climate change: How do we know? NASA: Global Climate Change. NASA. | climate.nasa.gov/evidence |
Chapter 9 | 159 | Wynes, S. and Nicholas, K. A. (2017). The climate mitigation gap: Education and government recommendations miss the most effective individual actions. Environmental Research Letters, 12(7), 074024. | iopscience.iop.org/article/10.1088/1748-9326/aa7541 |
Chapter 9 | 160 | United Nations. Only 11 years left to prevent irreversible damage from climate change, speakers warn during General Assembly high-level meeting. United Nations Meetings Coverage and Press Releases. 28 March 2019. | www.un.org/press/en/2019/ga12131.doc.htm |
Chapter | Reference Number | Content | URL |
---|---|---|---|
Chapter 10 | 1 | BDA: The Association of UK Dietitians. (2020). Plant-based diet: Food Fact Sheet. BDA. | www.bda.uk.com/resource/plant-based-diet.html |
Chapter 10 | 2 | Melina, V., Craig, W. and Levin, S. (2016). Position of the Academy of Nutrition and Dietetics: Vegetarian diets. Journal of the Academy of Nutrition and Dietetics, 116(12), 1970–80. | www.sciencedirect.com/science/article/pii/S2212267216311923 |
Chapter 10 | 3 | American Dietetic Association and Dietitians of Canada. (2003). Position of the American Dietetic Association and Dietitians of Canada: Vegetarian diets. Journal of the Academy of Nutrition and Dietetics, 103(6), 748–65. | www.sciencedirect.com/science/article/abs/pii/S0002822303002943 |
Chapter 10 | 4 | Agnoli, C. et al. (2017). Position paper on vegetarian diets from the working group of the Italian Society of Human Nutrition. Nutrition, Metabolism, and Cardiovascular Diseases, 27(12), 1037–52. | pubmed.ncbi.nlm.nih.gov/29174030 |
Chapter 10 | 5 | Amit, M., Canadian Paediatric Society and Community Paediatrics Committee. (2010). Vegetarian diets in children and adolescents. Paediatrics & Child Health, 15(5), 303–14. | www.cps.ca/documents/position/vegetarian-diets |
Chapter 10 | 6 | National Health and Medical Research Council. (2013). Australian Dietary Guidelines. National Health and Medical Research Council, Canberra. | www.eatforhealth.gov.au/sites/default/files/content/n55_australian_dietary_guidelines.pdf |
Chapter 10 | 7 | Simon, M. And now a word from our sponsors: Are America’s nutrition professionals in the pocket of Big Food? Eat Drink Politics. January 2013. | www.eatdrinkpolitics.com/wp-content/uploads/AND_Corporate_Sponsorship_Report.pdf |
Chapter 10 | 8 | Cheng, L. J., Jiang, Y., Wu, V. X. and Wang, W. (2020). A systematic review and meta‐analysis: Vinegar consumption on glycaemic control in adults with type 2 diabetes mellitus. Journal of Advanced Nursing, 76(2), 459–74. | onlinelibrary.wiley.com/doi/abs/10.1111/jan.14255 |
Chapter 10 | 1 | Jenkins, D. J. et al. (2001). Effect of a very-high-fiber vegetable, fruit, and nut diet on serum lipids and colonic function. Metabolism – Clinical and Experimental, 50(4), 494–503. | www.metabolismjournal.com/article/S0026-0495(01)08204-X/abstract |
Chapter 10 | 2 | Wang, P. Y., Fang, J. C., Gao, Z. H., Zhang, C. and Xie, S. Y. (2016). Higher intake of fruits, vegetables or their fiber reduces the risk of type 2 diabetes: A meta‐analysis. Journal of Diabetes Investigation, 7(1), 56–69. | onlinelibrary.wiley.com/doi/abs/10.1111/jdi.12376 |
Chapter 10 | 3 | Australian Bureau of Statistics. 4364.0.55.011 – Australian Health Survey: Consumption of added sugars, 2011–12. ABS. 24 April 2016. | www.abs.gov.au/ausstats/abs@.nsf/Lookup/4364.0.55.011main+features12011-12 |
Chapter 10 | 4 | Tey, S. L., Salleh, N. B., Henry, J. and Forde, C. G. (2017). Effects of aspartame-, monk fruit-, stevia- and sucrose-sweetened beverages on postprandial glucose, insulin and energy intake. International Journal of Obesity, 41(3), 450. | www.nature.com/articles/ijo2016225 |
Chapter 10 | 5 | Alcock, J., Maley, C. C. and Aktipis, C. A. (2014). Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms. BioEssays, 36(10), 940–9. | onlinelibrary.wiley.com/doi/10.1002/bies.201400071 |
Chapter 10 | 6 | Reynolds, A., Mann, J., Cummings, J., Winter, N., Mete, E. and Te Morenga, L. (2019). Carbohydrate quality and human health: A series of systematic reviews and meta-analyses. The Lancet, 393(10170), 434–45. | www.sciencedirect.com/science/article/pii/S0140673618318099 |
Chapter 10 | 7 | Hollænder, P. L., Ross, A. B. and Kristensen, M. (2015). Whole-grain and blood lipid changes in apparently healthy adults: A systematic review and meta-analysis of randomized controlled studies. American Journal of Clinical Nutrition, 102(3), 556–72. | academic.oup.com/ajcn/article-abstract/102/3/556/4564317 |
Chapter 10 | 8 | Seal, C. J. and Brownlee, I. A. (2015). Whole-grain foods and chronic disease: Evidence from epidemiological and intervention studies. Proceedings of the Nutrition Society, 74(3), 313–19. | www.cambridge.org/core/journals/proceedings-of-the-nutrition-society/article/wholegrain-foods-and-chronic-disease-evidence-from-epidemiological-and-intervention-studies/0F3E606C81771E34E11E74FF8122E56B |
Chapter 10 | 9 | What is a Whole Grain? Oldways Whole Grains Council. | wholegrainscouncil.org/what-whole-grain |
Chapter 10 | 10 | Gupta, R. K., Gangoliya, S. S. and Singh, N. K. (2015). Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. Journal of Food Science and Technology, 52(2), 676–84. | link.springer.com/article/10.1007/s13197-013-0978-y |
Chapter 10 | 11 | Othman, R. A., Moghadasian, M. H. and Jones, P. J. (2011). Cholesterol-lowering effects of oat β-glucan. Nutrition Reviews, 69(6), 299–309. | academic.oup.com/nutritionreviews/article-abstract/69/6/299/1815168 |
Chapter 10 | 12 | Greger, M. and Stone, G. (2015). How Not To Die : Discover the foods scientifically proven to prevent and reverse disease. Flatiron Books, New York. | www.panmacmillan.com.au/9781509852505 |
Chapter 10 | 13 | Pes, G. M., Tolu, F., Dore, M. P., Sechi, G. P., Errigo, A., Canelada, A. and Poulain, M. (2015). Male longevity in Sardinia: A review of historical sources supporting a causal link with dietary factors. European Journal of Clinical Nutrition, 69(4), 411–18. | www.nature.com/articles/ejcn2014230 |
Chapter 10 | 14 | World Health Organization. (2003). Diet, nutrition, and the prevention of chronic diseases: Report of a joint WHO/FAO Expert Consultation. World Health Organization, Geneva. | apps.who.int/iris/bitstream/handle/10665/42665/WHO_TRS_916.pdf |
Chapter 10 | 15 | Australian Government National Health and Medical Research Council and New Zealand Ministry of Health. (2014). Macronutrient Balance. Nutrient Reference Values for Australia and New Zealand. | www.nrv.gov.au/chronic-disease/macronutrient-balance |
Chapter 10 | 16 | Rizzo, N. S., Jaceldo-Siegl, K., Sabate, J. and Fraser, G. E. (2013). Nutrient profiles of vegetarian and nonvegetarian dietary patterns. Journal of the Academy of Nutrition and Dietetics, 113(12), 1610–19. | www.sciencedirect.com/science/article/pii/S2212267213011131 |
Chapter 10 | 17 | Orlich, M. J. et al. (2013). Vegetarian dietary patterns and mortality in Adventist Health Study 2. JAMA Internal Medicine, 173(13), 1230–8. | jamanetwork.com/journals/jamainternalmedicine/article-abstract/1710093 |
Chapter 10 | 18 | Briggs, M. A., Petersen, K. S. and Kris-Etherton, P. M. (2017). Saturated fatty acids and cardiovascular disease: Replacements for saturated fat to reduce cardiovascular risk. Healthcare, 5(2), 29. | www.mdpi.com/2227-9032/5/2/29 |
Chapter 10 | 19 | Imamura, F., Micha, R., Wu, J. H., de Oliveira Otto, M. C., Otite, F. O., Abioye, A. I. and Mozaffarian, D. (2016). Effects of saturated fat, polyunsaturated fat, monounsaturated fat, and carbohydrate on glucose-insulin homeostasis: A systematic review and meta-analysis of randomised controlled feeding trials. PLOS Medicine, 13(7), e1002087. | journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1002087 |
Chapter 10 | 20 | Liu, A. G., Ford, N. A., Hu, F. B., Zelman, K. M., Mozaffarian, D. and Kris-Etherton, P. M. (2017). A healthy approach to dietary fats: Understanding the science and taking action to reduce consumer confusion. Nutrition Journal, 16(1), 53. | link.springer.com/article/10.1186/s12937-017-0271-4 |
Chapter 10 | 21 | Lichtenstein, A. H. and Van Horn, L. (1998). Very low fat diets. Circulation, 98(9), 935–9. | www.ahajournals.org/doi/abs/10.1161/01.cir.98.9.935 |
Chapter 10 | 22 | Kris-Etherton, P. M., Petersen, K. and Van Horn, L. (2018). Convincing evidence supports reducing saturated fat to decrease cardiovascular disease risk. BMJ Nutrition, Prevention & Health, 1(1), bmjnph-2018-000009. | nutrition.bmj.com/content/early/2018/11/15/bmjnph-2018-000009 |
Chapter 10 | 23 | Health Canada. (2018). Canada’s Dietary Guidelines: For health professionals and policy makers. Government of Canada, Ottawa. | food-guide.canada.ca/sites/default/files/artifact-pdf/CDG-EN-2018.pdf |
Chapter 10 | 24 | National Health and Medical Research Council. (2013). Australian Dietary Guidelines. National Health and Medical Research Council, Canberra. | www.eatforhealth.gov.au/sites/default/files/content/n55_australian_dietary_guidelines.pdf |
Chapter 10 | 25 | Zhao, M. et al. (2018). Substantial increase in compliance with saturated fatty acid intake recommendations after one year following the American Heart Association Diet. Nutrients, 10(10), 1486. | www.mdpi.com/2072-6643/10/10/1486 |
Chapter 10 | 26 | American Heart Association. Saturated fat. American Heart Association. | www.heart.org/en/healthy-living/healthy-eating/eat-smart/fats/saturated-fats |
Chapter 10 | 27 | Theobroma oil. Science Direct. | www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/theobroma-oil |
Chapter 10 | 28 | Tokede, O. A., Gaziano, J. M. and Djousse, L. (2011). Effects of cocoa products/dark chocolate on serum lipids: A meta-analysis. European Journal of Clinical Nutrition, 65(8), 879–86. | www.nature.com/articles/ejcn201164 |
Chapter 10 | 29 | Yasuda, A., Natsume, M., Sasaki, K., Baba, S., Nakamura, Y., Kanegae, M. and Nagaoka, S. (2008). Cacao procyanidins reduce plasma cholesterol and increase fecal steroid excretion in rats fed a high‐cholesterol diet. Biofactors, 33(3), 211–23. | iubmb.onlinelibrary.wiley.com/doi/abs/10.1002/biof.5520330307 |
Chapter 10 | 30 | Freeman, A. M. et al. (2017). Trending cardiovascular nutrition controversies. Journal of the American College of Cardiology, 69(9), 1172–87. | www.onlinejacc.org/content/69/9/1172 |
Chapter 10 | 31 | Neelakantan, N., Seah, J. Y. H. and van Dam, R. M. (2020). The effect of coconut oil consumption on cardiovascular risk factors: A systematic review and meta-analysis of clinical trials. Circulation, 141(10), 803–14. | www.ahajournals.org/doi/abs/10.1161/CIRCULATIONAHA.119.043052 |
Chapter 10 | 32 | Latha, R. B. and Nasirullah, D. R. (2014). Physico-chemical changes in rice bran oil during heating at frying temperature. Journal of Food Science and Technology, 51(2), 335–40. | link.springer.com/article/10.1007/s13197-011-0495-9 |
Chapter 10 | 33 | Jolfaie, N. R., Rouhani, M. H., Surkan, P. J., Siassi, F. and Azadbakht, L. (2016). Rice bran oil decreases total and LDL cholesterol in humans: A systematic review and meta-analysis of randomized controlled clinical trials. Hormone and Metabolic Research, 48(7), 417–26. | www.thieme-connect.com/products/ejournals/abstract/10.1055/s-0042-105748 |
Chapter 10 | 34 | Azizian, H. and Kramer, J. K. (2005). A rapid method for the quantification of fatty acids in fats and oils with emphasis on trans fatty acids using Fourier transform near infrared spectroscopy (FT‐NIR). Lipids, 40(8), 855–67. | aocs.onlinelibrary.wiley.com/doi/abs/10.1007/s11745-005-1448-3 |
Chapter 10 | 35 | Bhardwaj, S., Passi, S. J., Misra, A., Pant, K. K., Anwar, K., Pandey, R. M. and Kardam, V. (2016). Effect of heating/reheating of fats/oils, as used by Asian Indians, on trans fatty acid formation. Food Chemistry, 212, 663–70. | www.sciencedirect.com/science/article/pii/S0308814616309141 |
Chapter 10 | 36 | Mossoba, M. M., Azizian, H., Tyburczy, C., Kramer, J. K., Delmonte, P., Kia, A. R. F. and Rader, J. I. (2013). Rapid FT-NIR analysis of edible oils for total SFA, MUFA, PUFA, and trans FA with comparison to GC. Journal of the American Oil Chemists’ Society, 90(6), 757–70. | link.springer.com/content/pdf/10.1007/s11746-013-2234-z.pdf |
Chapter 10 | 37 | Engel, S. and Tholstrup, T. (2015). Butter increased total and LDL cholesterol compared with olive oil but resulted in higher HDL cholesterol compared with a habitual diet. American Journal of Clinical Nutrition, 102(2), 309–15. | academic.oup.com/ajcn/article-abstract/102/2/309/4564657 |
Chapter 10 | 38 | Sun, Y., Neelakantan, N., Wu, Y., Lote-Oke, R., Pan, A. and van Dam, R. M. (2015). Palm oil consumption increases LDL cholesterol compared with vegetable oils low in saturated fat in a meta-analysis of clinical trials. Journal of Nutrition, 145(7), 1549–58. | academic.oup.com/jn/article-abstract/145/7/1549/4616780 |
Chapter 10 | 39 | Hu, F. B., Manson, J. E. and Willett, W. C. (2001). Types of dietary fat and risk of coronary heart disease: A critical review. Journal of the American College of Nutrition, 20(1), 5–19. | www.tandfonline.com/doi/abs/10.1080/07315724.2001.10719008 |
Chapter 10 | 40 | Sacks, F. M. (2020). Coconut oil and heart health: Fact or fiction? Circulation, 141(10), 815–17. | www.medscape.com/viewarticle/929357 |
Chapter 10 | 41 | Eyres, L., Eyres, M. F., Chisholm, A. and Brown, R. C. (2016). Coconut oil consumption and cardiovascular risk factors in humans. Nutrition Reviews, 74(4), 267–80. | academic.oup.com/nutritionreviews/article-abstract/74/4/267/1807413 |
Chapter 10 | 42 | O’Keefe, S., Gaskins‐Wright, S., Wiley, V. and Chen, I.‐C. (1994). Levels of trans geometrical isomers of essential fatty acids in some unhydrogenated U.S. vegetable oils. Journal of Food Lipids, 1, 165–76. | onlinelibrary.wiley.com/doi/abs/10.1111/j.1745-4522.1994.Tb00244.X |
Chapter 10 | 43 | Government of Canada. (2019). Trans fatty acid claims. Government of Canada. | www.inspection.gc.ca/food-label-requirements/labelling/industry/nutrient-content/specific-claim-requirements/eng/1389907770176/1389907817577?chap=6 |
Chapter 10 | 44 | Clemons, R. How bad are trans fats in food? Choice. 25 June 2019. | www.choice.com.au/food-and-drink/nutrition/fats/articles/trans-fat |
Chapter 10 | 45 | Remig, V., Franklin, B., Margolis, S., Kostas, G., Nece, T. and Street, J. C. (2010). Trans fats in America: A review of their use, consumption, health implications, and regulation. Journal of the American Dietetic Association, 110(4), 585–92. | pubmed.ncbi.nlm.nih.gov/20338284 |
Chapter 10 | 46 | Kones, R., Howell, S. and Rumana, U. (2017). N-3 polyunsaturated fatty acids and cardiovascular disease: Principles, practices, pitfalls, and promises – A contemporary review. Medical Principles and Practice, 26(6), 497–508. | www.karger.com/Article/Abstract/485837 |
Chapter 10 | 47 | Saleem, M. and Ahmad, N. (2018). Characterization of canola oil extracted by different methods using fluorescence spectroscopy. PLOS One, 13(12), e0208640. | www.ncbi.nlm.nih.gov/pmc/articles/PMC6296546 |
Chapter 10 | 48 | Wroniak, M., Krygier, K. and Kaczmarczyk, M. (2008). Comparison of the quality of cold pressed and virgin rapeseed oils with industrially obtained oils. Polish Journal of Food and Nutrition Sciences, 58(1), 85–9. | www.researchgate.net/profile/Malgorzata_Wroniak/publication/264402378_COMPARISON_OF_THE_QUALITY_OF_COLD_PRESSED_AND_VIRGIN_RAPESEED_OILS_WITH_INDUSTRIALLY_OBTAINED_OILS/links/53db8e5f0cf2a76fb667a46e.pdf |
Chapter 10 | 49 | McDowell, D., Elliott, C. T. and Koidis, A. (2017). Characterization and comparison of UK, Irish, and French cold pressed rapeseed oils with refined rapeseed oils and extra virgin olive oils. European Journal of Lipid Science and Technology, 119(8), 1600327. | onlinelibrary.wiley.com/doi/abs/10.1002/ejlt.201600327 |
Chapter 10 | 50 | American Heart Association. (2018). Dietary recommendations for healthy children. American Heart Association. | www.heart.org/en/healthy-living/healthy-eating/eat-smart/nutrition-basics/dietary-recommendations-for-healthy-children |
Chapter 10 | 51 | Burkitt, D. P. (1983). Don’t Forget Fibre in Your Diet: To help avoid many of our commonest diseases. 4th edition. Dunitz, London. | |
Chapter 10 | 52 | Trowell, H. (1972). Ischemic heart disease and dietary fiber. American Journal of Clinical Nutrition, 25(9), 926–32. | academic.oup.com/ajcn/article-abstract/25/9/926/4819039 |
Chapter 10 | 53 | Fayet-Moore, F., Cassettari, T., Tuck, K., McConnell, A. and Petocz, P. (2018). Dietary fibre intake in Australia. Paper I: Associations with demographic, socio-economic, and anthropometric factors. Nutrients, 10(5), 599. | www.mdpi.com/2072-6643/10/5/599 |
Chapter 10 | 54 | Quagliani, D. and Felt-Gunderson, P. (2017). Closing America’s fiber intake gap: Communication strategies from a food and fiber summit. American Journal of Lifestyle Medicine, 11(1), 80–5. | journals.sagepub.com/doi/abs/10.1177/1559827615588079 |
Chapter 10 | 55 | DeVries, J. W. (2003). On defining dietary fibre. Proceedings of the Nutrition Society, 62(1), 37–43. | www.cambridge.org/core/journals/proceedings-of-the-nutrition-society/article/on-defining-dietary-fibre/67177B38FC870323404F903950E23A1E |
Chapter 10 | 56 | Australian Government National Health and Medical Research Council and New Zealand Ministry of Health. (2019). Dietary fibre. Nutrient Reference Values for Australia and New Zealand. | www.nrv.gov.au/nutrients/dietary-fibre |
Chapter 10 | 57 | Weickert, M. O. and Pfeiffer, A. F. (2018). Impact of dietary fiber consumption on insulin resistance and the prevention of type 2 diabetes. Journal of Nutrition, 148(1), 7–12. | academic.oup.com/jn/article-abstract/148/1/7/4823705 |
Chapter 10 | 58 | Slavin, J. (2013). Fiber and prebiotics: Mechanisms and health benefits. Nutrients, 5(4), 1417–35. | www.mdpi.com/2072-6643/5/4/1417 |
Chapter 10 | 59 | Nazzaro, F., Fratianni, F., De Feo, V., Battistelli, A., Da Cruz, A. G. and Coppola, R. (2020). Polyphenols, the new frontiers of prebiotics. Advances in Food and Nutrition Research, 94, 35–89. | pubmed.ncbi.nlm.nih.gov/32892838 |
Chapter 10 | 60 | Żółkiewicz, J., Marzec, A., Ruszczyński, M. and Feleszko, W. (2020). Postbiotics – A step beyond pre- and probiotics. Nutrients, 12(8), 2189. | www.ncbi.nlm.nih.gov/pmc/articles/PMC7468815 |
Chapter 10 | 61 | Valdes, A. M., Walter, J., Segal, E. and Spector, T. D. (2018). Role of the gut microbiota in nutrition and health. BMJ, 361, k2179. | www.bmj.com/content/361/bmj.k2179 |
Chapter 10 | 62 | Singh, R. K. et al. (2017). Influence of diet on the gut microbiome and implications for human health. Journal of Translational Medicine, 15(1), 73. | link.springer.com/article/10.1186/s12967-017-1175-y |
Chapter 10 | 63 | Australian Government National Health and Medical Research Council and New Zealand Ministry of Health. (2017). Summary: Recommendations to reduce chronic disease risk. Nutrient Reference Values for Australia and New Zealand. | www.nrv.gov.au/chronic-disease/summary |
Chapter 10 | 64 | O’Keefe, S. J. (2019). The association between dietary fibre deficiency and high-income lifestyle-associated diseases: Burkitt’s hypothesis revisited. The Lancet Gastroenterology & Hepatology, 4(12), 984–96. | www.sciencedirect.com/science/article/pii/S2468125319302572 |
Chapter 10 | 65 | Gardner, C. D., Hartle, J. C., Garrett, R. D., Offringa, L. C. and Wasserman, A. S. (2019). Maximizing the intersection of human health and the health of the environment with regard to the amount and type of protein produced and consumed in the United States. Nutrition Reviews, 77(4), 197–215. | www.ncbi.nlm.nih.gov/pmc/articles/PMC6394758 |
Chapter 10 | 66 | Mariotti, F. and Gardner, C. D. (2019). Dietary protein and amino acids in vegetarian diets: A review. Nutrients, 11(11), 2661. | www.mdpi.com/2072-6643/11/11/2661 |
Chapter 10 | 67 | Marsh, K. A., Munn, E. A. and Baines, S. K. (2013). Protein and vegetarian diets. Medical Journal of Australia, 199(4 Suppl), S7–10. | faunalytics.org/wp-content/uploads/2015/05/Citation2049.pdf |
Chapter 10 | 68 | McDougall, J. (2002). Plant foods have a complete amino acid composition. Circulation, 105(25), e197. | www.medicosadventistas.org/wp-content/uploads/2018/09/Plant-Foods-Have-a-Complete-Amino-Acid-Composition.pdf |
Chapter 10 | 69 | Craddock, J. C., Genoni, A., Strutt, E. F. and Goldman, D. M. (2021). Limitations with the Digestible Indispensable Amino Acid Score (DIAAS) with special attention to plant-based diets: A review. Current Nutrition Reports, 1–6. | link.springer.com/article/10.1007/s13668-020-00348-8 |
Chapter 10 | 70 | Tomé, D. (2013). Digestibility issues of vegetable versus animal proteins: Protein and amino acid requirements – Functional aspects. Food and Nutrition Bulletin, 34(2), 272–4. | journals.sagepub.com/doi/pdf/10.1177/156482651303400225 |
Chapter 10 | 71 | Australian Government National Health and Medical Research Council and New Zealand Ministry of Health. (2014). Protein. Nutrient Reference Values for Australia and New Zealand. | www.nrv.gov.au/nutrients/protein |
Chapter 10 | 72 | Melina, V., Craig, W. and Levin, S. (2016). Position of the Academy of Nutrition and Dietetics: Vegetarian diets. Journal of the Academy of Nutrition and Dietetics, 116(12), 1970–80. | jandonline.org/article/S2212-2672(16)31192-3 |
Chapter 10 | 73 | Schüpbach, R., Wegmüller, R., Berguerand, C., Bui, M. and Herter-Aeberli, I. (2017). Micronutrient status and intake in omnivores, vegetarians and vegans in Switzerland. European Journal of Nutrition, 56(1), 283–93. | link.springer.com/content/pdf/10.1007/s00394-015-1079-7.pdf |
Chapter 10 | 74 | Davey, G. K., Spencer, E. A., Appleby, P. N., Allen, N. E., Knox, K. H. and Key, T. J. (2003). EPIC–Oxford: Lifestyle characteristics and nutrient intakes in a cohort of 33 883 meat-eaters and 31 546 non meat-eaters in the UK. Public Health Nutrition, 6(3), 259–68. | www.ncbi.nlm.nih.gov/pubmed/12740075 |
Chapter 10 | 75 | Phillips, S. M., Moore, D. R. and Tang, J. E. (2007). A critical examination of dietary protein requirements, benefits, and excesses in athletes. International Journal of Sport Nutrition and Exercise Metabolism, 17(s1), S58–76. | journals.humankinetics.com/view/journals/ijsnem/17/s1/article-pS58.xml |
Chapter 10 | 76 | Thomas, D. T., Erdman, K. A. and Burke, L. M. (2016). Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and athletic performance. Journal of the Academy of Nutrition and Dietetics, 116(3), 501–28. | www.sciencedirect.com/science/article/pii/S221226721501802X |
Chapter 10 | 77 | Morton, R. W. et al. (2018). A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. British Journal of Sports Medicine, 52(6), 376–84. | bjsm.bmj.com/content/52/6/376 |
Chapter 10 | 78 | Kato, H., Suzuki, K., Bannai, M. and Moore, D. R. (2016). Protein requirements are elevated in endurance athletes after exercise as determined by the indicator amino acid oxidation method. PLOS One, 11(6), e0157406. | journals.plos.org/plosone/article?id=10.1371/journal.pone.0157406 |
Chapter 10 | 79 | Jäger, R. et al. (2017). International Society of Sports Nutrition position stand: Protein and exercise. Journal of the International Society of Sports Nutrition, 14(1), 1–25. | jissn.biomedcentral.com/articles/10.1186/s12970-017-0177-8 |
Chapter 10 | 80 | Devries, M. C. et al. (2018). Changes in kidney function do not differ between healthy adults consuming higher- compared with lower- or normal-protein diets: A systematic review and meta-analysis. Journal of Nutrition, 148(11), 1760–75. | academic.oup.com/jn/article-abstract/148/11/1760/5153345 |
Chapter 10 | 81 | Ko, G. J., Obi, Y., Tortoricci, A. R. and Kalantar-Zadeh, K. (2017). Dietary protein intake and chronic kidney disease. Current Opinion in Clinical Nutrition and Metabolic Care, 20(1), 77. | www.ncbi.nlm.nih.gov/pmc/articles/pmc5962279 |
Chapter 10 | 82 | Applegate, C. C., Rowles, J. L., Ranard, K. M., Jeon, S. and Erdman, J. W. (2018). Soy consumption and the risk of prostate cancer: An updated systematic review and meta-analysis. Nutrients, 10(1), 40. | www.mdpi.com/2072-6643/10/1/40 |
Chapter 10 | 83 | Messina, M. (2016). Impact of soy foods on the development of breast cancer and the prognosis of breast cancer patients. Complementary Medicine Research, 23(2), 75–80. | www.karger.com/Article/Abstract/444735 |
Chapter 10 | 84 | Trock, B. J., Hilakivi-Clarke, L. and Clarke, R. (2006). Meta-analysis of soy intake and breast cancer risk. Journal of the National Cancer Institute, 98(7), 459–71. | academic.oup.com/jnci/article-abstract/98/7/459/2522023 |
Chapter 10 | 85 | Okekunle, A. P., Gao, J., Wu, X., Feng, R. and Sun, C. (2020). Higher dietary soy intake appears inversely related to breast cancer risk independent of estrogen receptor breast cancer phenotypes. Heliyon, 6(7), e04228. | www.sciencedirect.com/science/article/pii/S2405844020310720 |
Chapter 10 | 86 | Li, N. et al. (2020). Soy and isoflavone consumption and multiple health outcomes: Umbrella review of systematic reviews and meta‐analyses of observational studies and randomized trials in humans. Molecular Nutrition & Food Research, 64(4), 1900751. | onlinelibrary.wiley.com/doi/abs/10.1002/mnfr.201900751 |
Chapter 10 | 87 | Simon, S. Soy and cancer risk: Our expert’s advice. American Cancer Society. 29 April 2019. | www.cancer.org/latest-news/soy-and-cancer-risk-our-experts-advice.html |
Chapter 10 | 88 | Messina, M. (2016). Soy and health update: Evaluation of the clinical and epidemiologic literature. Nutrients, 8(12), 754. | www.ncbi.nlm.nih.gov/pmc/articles/PMC5188409 |
Chapter 10 | 89 | Martinez, J. and Lewi, J. (2008). An unusual case of gynecomastia associated with soy product consumption. Endocrine Practice, 14(4), 415–18. | journals.aace.com/doi/abs/10.4158/EP.14.4.415 |
Chapter 10 | 90 | Reed, K. E., Camargo, J., Hamilton-Reeves, J., Kurzer, M. and Messina, M. (2020). Neither soy nor isoflavone intake affects male reproductive hormones: An expanded and updated meta-analysis of clinical studies. Reproductive Toxicology, 100, 60–7. Advance online publication. | pubmed.ncbi.nlm.nih.gov/33383165 |
Chapter 10 | 91 | Messina, M. and Redmond, G. (2006). Effects of soy protein and soybean isoflavones on thyroid function in healthy adults and hypothyroid patients: A review of the relevant literature. Thyroid, 16(3), 249–58. | pubmed.ncbi.nlm.nih.gov/16571087 |
Chapter 10 | 92 | Chandra, A. K., Mukhopadhyay, S., Lahari, D. and Tripathy, S. (2004). Goitrogenic content of Indian cyanogenic plant foods & their in vitro anti-thyroidal activity. Indian Journal of Medical Research, 119(5), 180–5. | pubmed.ncbi.nlm.nih.gov/15218979 |
Chapter 10 | 93 | Sosvorová, L., Mikšátková, P., Bičíková, M., Kaňová, N. and Lapčík, O. (2012). The presence of monoiodinated derivates of daidzein and genistein in human urine and its effect on thyroid gland function. Food and Chemical Toxicology, 50(8), 2774–9. | pubmed.ncbi.nlm.nih.gov/22659465 |
Chapter 10 | 94 | Kamle, M., Kumar, P., Patra, J. K. and Bajpai, V. K. (2017). Current perspectives on genetically modified crops and detection methods. 3 Biotech, 7(3), 219. | link.springer.com/article/10.1007/s13205-017-0809-3 |
Chapter 10 | 95 | Flachowsky, G., Schafft, H. and Meyer, U. (2012). Animal feeding studies for nutritional and safety assessments of feeds from genetically modified plants: A review. Journal für Verbraucherschutz und Lebensmittelsicherheit, 7(3), 179–94. | link.springer.com/article/10.1007/s00003-012-0777-9 |
Chapter 10 | 96 | Bøhn, T., Cuhra, M., Traavik, T., Sanden, M., Fagan, J. and Primicerio, R. (2014). Compositional differences in soybeans on the market: Glyphosate accumulates in Roundup Ready GM soybeans. Food Chemistry, 153, 207–15. | pubmed.ncbi.nlm.nih.gov/24491722 |
Chapter 10 | 97 | Poore, J. and Nemecek, T. (2018). Reducing food’s environmental impacts through producers and consumers. Science, 360(6392), 987–92. | science.sciencemag.org/content/360/6392/987 |
Chapter 10 | 98 | Cancer Council Australia National Cancer Control Policy. (2013). Position statement – Soy, phyto-oestrogens and cancer prevention. Cancer Council Australia. | wiki.cancer.org.au/policy/Position_statement_-_Soy,_phyto-oestrogens_and_cancer_prevention |
Chapter 10 | 99 | Iebba, V. et al. (2016). Eubiosis and dysbiosis: The two sides of the microbiota. New Microbiologica, 39(1), 1–12. | core.ac.uk/download/pdf/54532058.pdf |
Chapter 10 | 100 | De Filippo, C. et al. (2010). Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proceedings of the National Academy of Sciences, 107(33), 14691–6. | www.pnas.org/content/107/33/14691 |
Chapter 10 | 101 | David, L. A. et al. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505(7484), 559–63. | www.nature.com/articles/nature12820 |
Chapter 10 | 102 | Wang, S., Li, C., Copeland, L., Niu, Q. and Wang, S. (2015). Starch retrogradation: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 14(5), 568–85. | onlinelibrary.wiley.com/doi/abs/10.1111/1541-4337.12143 |
Chapter 10 | 103 | Sonia, S., Witjaksono, F. and Ridwan, R. (2015). Effect of cooling of cooked white rice on resistant starch content and glycemic response. Asia Pacific Journal of Clinical Nutrition, 24(4), 620. | apjcn.nhri.org.tw/server/APJCN/24/4/620.pdf |
Chapter 10 | 104 | Muir, J. G. and O’Dea, K. (1992). Measurement of resistant starch: Factors affecting the amount of starch escaping digestion in vitro. American Journal of Clinical Nutrition, 56(1), 123–7. | academic.oup.com/ajcn/article-abstract/56/1/123/4715601 |
Chapter 10 | 105 | McDonald, D. et al. (2018). American Gut: An open platform for citizen science microbiome research. mSystems, 3(3), e00031–18. | msystems.asm.org/content/3/3/e00031-18 |
Chapter 10 | 106 | World Health Organization. Antibiotic resistance. WHO Newsroom. 31 July 2020. | www.who.int/news-room/fact-sheets/detail/antibiotic-resistance |
Chapter 10 | 107 | Thompson, H. J. et al. (2006). Dietary botanical diversity affects the reduction of oxidative biomarkers in women due to high vegetable and fruit intake. Journal of Nutrition, 136(8), 2207–12. | academic.oup.com/jn/article-abstract/136/8/2207/4664809 |
Chapter 10 | 108 | Yoshimoto, S. et al. (2013). Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature, 499(7456), 97–101. | www.nature.com/articles/nature12347 |
Chapter 10 | 109 | Nguyen, T. T., Ung, T. T., Kim, N. H. and Do Jung, Y. (2018). Role of bile acids in colon carcinogenesis. World Journal of Clinical Cases, 6(13), 577. | www.ncbi.nlm.nih.gov/pmc/articles/PMC6232560/ |
Chapter 10 | 110 | Winham, D. M. and Hutchins, A. M. (2011). Perceptions of flatulence from bean consumption among adults in 3 feeding studies. Nutrition Journal, 10(1), 128. | link.springer.com/article/10.1186/1475-2891-10-128 |
Chapter 10 | 111 | Wu, K. L. et al. (2008). Effects of ginger on gastric emptying and motility in healthy humans. European Journal of Gastroenterology & Hepatology, 20(5), 436–40. | journals.lww.com/eurojgh/Abstract/2008/05000/Effects_of_ginger_on_gastric_emptying_and_motility.11.aspx |
Chapter 10 | 112 | Boskabady, M. H., Alitaneh, S. and Alavinezhad, A. (2014). Carum copticum L.: A herbal medicine with various pharmacological effects. BioMed Research International, 2014, 569087. | www.hindawi.com/journals/bmri/2014/569087 |
Chapter 10 | 113 | Agah, S., Taleb, A. M., Moeini, R., Gorji, N. and Nikbakht, H. (2013). Cumin extract for symptom control in patients with irritable bowel syndrome: A case series. Middle East Journal of Digestive Diseases, 5(4), 217. | www.ncbi.nlm.nih.gov/pmc/articles/pmc3990147 |
Chapter 10 | 114 | Hatcher, H., Planalp, R., Cho, J., Torti, F. M. and Torti, S. V. (2008). Curcumin: From ancient medicine to current clinical trials. Cellular and Molecular Life Sciences, 65(11), 1631–52. | www.ncbi.nlm.nih.gov/pmc/articles/PMC4686230 |
Chapter 10 | 115 | Srinivasan, K. (2007). Black pepper and its pungent principle-piperine: A review of diverse physiological effects. Critical Reviews in Food Science and Nutrition, 47(8), 735–48. | www.tandfonline.com/doi/abs/10.1080/10408390601062054 |
Chapter 10 | 116 | Anti, M. et al. (1998). Water supplementation enhances the effect of high-fiber diet on stool frequency and laxative consumption in adult patients with functional constipation. Hepato-gastroenterology, 45(21), 727–32. | pubmed.ncbi.nlm.nih.gov/9684123 |
Chapter 10 | 117 | Nour-Eldein, H., Salama, H. M., Abdulmajeed, A. A. and Heissam, K. S. (2014). The effect of lifestyle modification on severity of constipation and quality of life of elders in nursing homes at Ismailia city, Egypt. Journal of Family & Community Medicine, 21(2), 100–6. | www.ncbi.nlm.nih.gov/pmc/articles/PMC4073557 |
Chapter 10 | 118 | Basnayake, C. (2018). Treatment of irritable bowel syndrome. Australian Prescriber, 41(5), 145. | www.ncbi.nlm.nih.gov/pmc/articles/PMC6202292 |
Chapter 10 | 119 | Zhang, Q. E., Wang, F., Qin, G., Zheng, W., Ng, C. H., Ungvari, G. S., Yuan, Z., Mei, S., Wang, G. and Xiang, Y. T. (2018). Depressive symptoms in patients with irritable bowel syndrome: A meta-analysis of comparative studies. International Journal of Biological Sciences, 14(11), 1504–12. | www.ncbi.nlm.nih.gov/pmc/articles/PMC6158731 |
Chapter 10 | 120 | Catassi, G., Lionetti, E., Gatti, S. and Catassi, C. (2017). The low FODMAP diet: Many question marks for a catchy acronym. Nutrients, 9(3), 292. | www.ncbi.nlm.nih.gov/pmc/articles/PMC5372955 |
Chapter 10 | 121 | Hill, P., Muir, J. G. and Gibson, P. R. (2017). Controversies and recent developments of the low-FODMAP diet. Gastroenterology & Hepatology, 13(1), 36–45. | www.ncbi.nlm.nih.gov/pmc/articles/PMC5390324 |
Chapter 10 | 122 | De Filippis, F. et al. (2016). High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut, 65(11), 1812–21. | gut.bmj.com/content/65/11/1812 |
Chapter 10 | 123 | Chambers, E. S., Preston, T., Frost, G. and Morrison, D. J. (2018). Role of gut microbiota-generated short-chain fatty acids in metabolic and cardiovascular health. Current Nutrition Reports, 7(4), 198–206. | link.springer.com/article/10.1007/s13668-018-0248-8 |
Chapter 10 | 124 | Rubio-Tapia, A., Hill, I. D., Kelly, C. P., Calderwood, A. H. and Murray, J. A. (2013). merican College of Gastroenterology clinical guideline: Diagnosis and management of celiac disease. American Journal of Gastroenterology, 108(5), 656. | pubmed.ncbi.nlm.nih.gov/23609613 |
Chapter 10 | 125 | Niland, B. and Cash, B. D. (2018). Health benefits and adverse effects of a gluten-free diet in non–celiac disease patients. Gastroenterology & Hepatology, 14(2), 82. | www.ncbi.nlm.nih.gov/pmc/articles/PMC5866307 |
Chapter 10 | 126 | Green, P. H. and Cellier, C. (2007). Celiac Disease. New England Journal of Medicine, 357(17), 1731–43. | www.nejm.org/doi/full/10.1056/nejmra071600 |
Chapter 10 | 127 | Lionetti, E., Pulvirenti, A., Vallorani, M., Catassi, G., Verma, A. K., Gatti, S. and Catassi, C. (2017). Re-challenge studies in non-celiac gluten sensitivity: A systematic review and meta-analysis. Frontiers in Physiology, 8, 621. | www.frontiersin.org/articles/10.3389/fphys.2017.00621 |
Chapter 10 | 128 | Barbaro, M. R., Cremon, C., Stanghellini, V. and Barbara, G. (2018). Recent advances in understanding non-celiac gluten sensitivity. F1000Research, 7. | www.ncbi.nlm.nih.gov/pmc/articles/pmc6182669 |
Chapter 10 | 129 | Biesiekierski, J. R., Peters, S. L., Newnham, E. D., Rosella, O., Muir, J. G. and Gibson, P. R. (2013). No effects of gluten in patients with self-reported non-celiac gluten sensitivity after dietary reduction of fermentable, poorly absorbed, short-chain carbohydrates. Gastroenterology, 145(2), 320–8. | www.sciencedirect.com/science/article/pii/S0016508513007026 |
Chapter 10 | 130 | Skodje, G. I. et al. (2018). Fructan, rather than gluten, induces symptoms in patients with self-reported non-celiac gluten sensitivity. Gastroenterology, 154(3), 529–39. | www.sciencedirect.com/science/article/pii/S0016508517363023 |
Chapter 10 | 131 | Bulsiewicz, W. (2020). Fiber Fueled: The plant-based gut health program for losing weight, restoring your health, and optimizing your microbiome. Avery, an imprint of Penguin Random House, New York. | www.penguin.com.au/books/fiber-fueled-9780593084564 |
Chapter 10 | 132 | Lebwohl, B. and Willett, W. C. (2017). Long term gluten consumption in adults without celiac disease and risk of coronary heart disease: Prospective cohort study. BMJ, 357, j1892. | www.bmj.com/content/357/bmj.j1892 |
Chapter 10 | 133 | Hu, Y. et al. (2020). Intake of whole grain foods and risk of type 2 diabetes: Results from three prospective cohort studies. BMJ, 370, m2206. | www.bmj.com/content/370/bmj.m2206 |
Chapter 10 | 134 | Aune, D., Norat, T., Romundstad, P. and Vatten, L. J. (2013). Whole grain and refined grain consumption and the risk of type 2 diabetes: A systematic review and dose-response meta-analysis of cohort studies. European Journal of Epidemiology, 28(11), 845–58. | link.springer.com/content/pdf/10.1007/s10654-013-9852-5.pdf |
Chapter 10 | 135 | Zong, G. et al. (2018). Gluten intake and risk of type 2 diabetes in three large prospective cohort studies of US men and women. Diabetologia, 61(10), 2164–73. | link.springer.com/article/10.1007/s00125-018-4697-9 |
Chapter 10 | 136 | Noah, N. D., Bender, A. E., Reaidi, G. B. and Gilbert, R. J. (1980). Food poisoning from raw red kidney beans. BMJ, 281(6234), 236–7. | www.ncbi.nlm.nih.gov/pmc/articles/PMC171367066 |
Chapter 10 | 137 | Bender, A. E. and Reaidi, G. B. (1982). Toxicity of kidney beans (Phaseolus vulgaris) with particular reference to lectins. Journal of Plant Foods, 4(1), 15–22. | www.tandfonline.com/doi/abs/10.1080/0142968X.1982.11904243 |
Chapter 10 | 138 | Mazalovska, M. and Kouokam, J. C. (2020). Plant-derived lectins as potential cancer therapeutics and diagnostic tools. BioMed Research International, 2020, 1631394. | www.hindawi.com/journals/bmri/2020/1631394 |
Chapter 10 | 139 | Miller, V. et al. (2017). Fruit, vegetable, and legume intake, and cardiovascular disease and deaths in 18 countries (PURE): A prospective cohort study. The Lancet, 390(10107), 2037–49. | www.sciencedirect.com/science/article/pii/S0140673617322535 |
Chapter 10 | 140 | Li, H., Li, J., Shen, Y., Wang, J. and Zhou, D. (2017). Legume consumption and all-cause and cardiovascular disease mortality. BioMed Research International, 2017, 8450618. | www.hindawi.com/journals/bmri/2017/8450618 |
Chapter 10 | 141 | Darmadi-Blackberry, I., Wahlqvist, M. L., Kouris-Blazos, A., Steen, B., Lukito, W., Horie, Y. and Horie, K. (2004). Legumes: The most important dietary predictor of survival in older people of different ethnicities. Asia Pacific Journal of Clinical Nutrition, 13(2), 217–20. | citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.538.8279&rep=rep1&type=pdf |
Chapter 10 | 142 | Hayat, I., Ahmad, A., Masud, T., Ahmed, A. and Bashir, S. (2014). Nutritional and health perspectives of beans (Phaseolus vulgaris L.): An overview. Critical Reviews in Food Science and Nutrition, 54(5), 580–92. | www.tandfonline.com/doi/abs/10.1080/10408398.2011.596639 |
Chapter 10 | 143 | Cooper, J. S., Phuyal, P. and Shah, N. (2020). Oxygen Toxicity. (Updated 19 November 2020). In StatPearls [Internet]. StatPearls Publishing, Treasure Island. | www.ncbi.nlm.nih.gov/books/NBK430743 |
Chapter 10 | 144 | Whelan, K. (2011). Probiotics and prebiotics in the management of irritable bowel syndrome: A review of recent clinical trials and systematic reviews. Current Opinion in Clinical Nutrition and Metabolic Care, 14(6), 581–7. | pubmed.ncbi.nlm.nih.gov/21892075 |
Chapter 10 | 145 | Su, G. L., Ko, C. W., Bercik, P., Falck-Ytter, Y., Sultan, S., Weizman, A. V. and Morgan, R. L. (2020). AGA clinical practice guidelines on the role of probiotics in the management of gastrointestinal disorders. Gastroenterology, 159(2), 697–705. | www.gastrojournal.org/article/S0016-5085%2820%2934729-6 |
Chapter 10 | 146 | Franzosa, E. A., Huang, K., Meadow, J. F., Gevers, D., Lemon, K. P., Bohannan, B. J. and Huttenhower, C. (2015). Identifying personal microbiomes using metagenomic codes. Proceedings of the National Academy of Sciences, 112(22), E2930–8. | www.pnas.org/content/112/22/E2930 |
Chapter 10 | 147 | Zawistowska-Rojek, A. and Tyski, S. (2018). Are probiotic really safe for humans? Polish Journal of Microbiology, 67(3), 251. | www.ncbi.nlm.nih.gov/pmc/articles/pmc7256845 |
Chapter 10 | 148 | Hempel, S. et al. (2012). Probiotics for the prevention and treatment of antibiotic-associated diarrhea: A systematic review and meta-analysis. JAMA, 307(18), 1959–69. | pubmed.ncbi.nlm.nih.gov/22570464 |
Chapter 10 | 149 | Sleator, R. D. (2015). Designer probiotics: Development and applications in gastrointestinal health. World Journal of Gastrointestinal Pathophysiology, 6(3), 73. | www.ncbi.nlm.nih.gov/pmc/articles/PMC4540709 |
Chapter 10 | 150 | Dale, H. F., Rasmussen, S. H., Asiller, Ö. Ö. and Lied, G. A. (2019). Probiotics in irritable bowel syndrome: An up-to-date systematic review. Nutrients, 11(9), 2048. | www.mdpi.com/2072-6643/11/9/2048 |
Chapter 10 | 151 | Suez, J. et al. (2018). Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell, 174(6), 1406–23. | www.sciencedirect.com/science/article/pii/S0092867418311085 |
Chapter 10 | 152 | Derrien, M. and van Hylckama Vlieg, J. E. (2015). Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends in Microbiology, 23(6), 354–66. | www.sciencedirect.com/science/article/pii/S0966842X15000566 |
Chapter 10 | 153 | Dimidi, E., Cox, S. R., Rossi, M. and Whelan, K. (2019). Fermented foods: Definitions and characteristics, impact on the gut microbiota and effects on gastrointestinal health and disease. Nutrients, 11(8), 1806. | www.mdpi.com/2072-6643/11/8/1806 |
Chapter 10 | 154 | Lu, Z., Breidt, F., Plengvidhya, V. and Fleming, H. P. (2003). Bacteriophage ecology in commercial sauerkraut fermentations. Applied and Environmental Microbiology, 69(6), 3192–202. | aem.asm.org/content/69/6/3192 |
Chapter 10 | 155 | Şanlier, N., Gökcen, B. B. and Sezgin, A. C. (2019). Health benefits of fermented foods. Critical Reviews in Food Science and Nutrition, 59(3), 506–27. | www.tandfonline.com/doi/abs/10.1080/10408398.2017.1383355 |
Chapter 10 | 156 | Melini, F., Melini, V., Luziatelli, F., Ficca, A. G. and Ruzzi, M. (2019). Health-promoting components in fermented foods: An up-to-date systematic review. Nutrients, 11(5), 1189. | www.mdpi.com/2072-6643/11/5/1189 |
Chapter 10 | 157 | Abu-Salem, F. M., Mohamed, R. K., Gibriel, A. Y. and Rasmy, N. M. (2014). Levels of some antinutritional factors in tempeh produced from some legumes and jojobas seeds. International Journal of Biological, Agricultural, Biosystems, Life Science and Engineering, 8(3), 296–301. | www.researchgate.net/profile/Rasha_Mohamed41/publication/330873382_Levels_of_Some_Antinutritional_Factors_in_Tempeh_Produced_From_Some_Legumes_and_Jojobas_Seeds/links/5c59458d92851c22a3aa78b8/Levels-of-Some-Antinutritional-Factors-in-Tempeh-Produced-From-Some-Legumes-and-Jojobas-Seeds.pdf |
Chapter 10 | 158 | Lopez, H. W., Krespine, V., Guy, C., Messager, A., Demigne, C. and Remesy, C. (2001). Prolonged fermentation of whole wheat sourdough reduces phytate level and increases soluble magnesium. Journal of Agricultural and Food Chemistry, 49(5), 2657–62. | pubs.acs.org/doi/abs/10.1021/jf001255z |
Chapter 10 | 159 | Reddy, N. R. and Pierson, M. D. (1994). Reduction in antinutritional and toxic components in plant foods by fermentation. Food Research International, 27(3), 281–90. | www.sciencedirect.com/science/article/pii/0963996994900965 |
Chapter 10 | 160 | Filannino, P., Bai, Y., Di Cagno, R., Gobbetti, M. and Gänzle, M. G. (2015). Metabolism of phenolic compounds by Lactobacillus spp. during fermentation of cherry juice and broccoli puree. Food Microbiology, 46, 272–9. | www.sciencedirect.com/science/article/pii/S0740002014002172 |
Chapter 10 | 161 | Saa, D. T., Di Silvestro, R., Dinelli, G. and Gianotti, A. (2017). Effect of sourdough fermentation and baking process severity on dietary fibre and phenolic compounds of immature wheat flour bread. LWT – Food Science and Technology, 83, 26–32. | www.sciencedirect.com/science/article/pii/S0023643817302980 |
Chapter 10 | 162 | Laatikainen, R., Koskenpato, J., Hongisto, S. M., Loponen, J., Poussa, T., Hillilä, M. and Korpela, R. (2016). Randomised clinical trial: Low‐FODMAP rye bread vs. regular rye bread to relieve the symptoms of irritable bowel syndrome. Alimentary Pharmacology and Therapeutics, 44(5), 460–70. | onlinelibrary.wiley.com/doi/abs/10.1111/apt.13726 |
Chapter 10 | 163 | Webber, S. Fermented foods and FODMAPs. FODMAP Blog. Monash University. 25 January 2017. | www.monashfodmap.com/blog/fermented-foods-and-fodmaps |
Chapter 10 | 164 | Allès, B., Baudry, J., Méjean, C., Touvier, M., Péneau, S., Hercberg, S. and Kesse-Guyot, E. (2017). Comparison of sociodemographic and nutritional characteristics between self-reported vegetarians, vegans, and meat-eaters from the NutriNet-Santé study. Nutrients, 9(9), 1023. | www.mdpi.com/224318 |
Chapter 10 | 165 | Sobiecki, J. G., Appleby, P. N., Bradbury, K. E. and Key, T. J. (2016). High compliance with dietary recommendations in a cohort of meat eaters, fish eaters, vegetarians, and vegans: Results from the European Prospective Investigation into Cancer and Nutrition–Oxford study. Nutrition Research, 36(5), 464–77. | www.sciencedirect.com/science/article/pii/S0271531716000026 |
Chapter 10 | 166 | Haider, L. M., Schwingshackl, L., Hoffmann, G. and Ekmekcioglu, C. (2018). The effect of vegetarian diets on iron status in adults: A systematic review and meta-analysis. Critical Reviews in Food Science and Nutrition, 58(8), 1359–74. | www.tandfonline.com/doi/abs/10.1080/10408398.2016.1259210 |
Chapter 10 | 167 | Foster, M., Chu, A., Petocz, P. and Samman, S. (2013). Effect of vegetarian diets on zinc status: A systematic review and meta‐analysis of studies in humans. Journal of the Science of Food and Agriculture, 93(10), 2362–71. | onlinelibrary.wiley.com/doi/abs/10.1002/jsfa.6179 |
Chapter 10 | 168 | Leung, A. M., LaMar, A., He, X., Braverman, L. E. and Pearce, E. N. (2011). Iodine status and thyroid function of Boston-area vegetarians and vegans. Journal of Clinical Endocrinology & Metabolism, 96(8), E1303–7. | academic.oup.com/jcem/article-abstract/96/8/E1303/2833831 |
Chapter 10 | 169 | Henjum, S. et al. (2018). Suboptimal iodine status and low iodine knowledge in young Norwegian women. Nutrients, 10(7), 941. | www.mdpi.com/2072-6643/10/7/941 |
Chapter 10 | 170 | Brantsæter, A. L. et al. (2018). Inadequate iodine intake in population groups defined by age, life stage and vegetarian dietary practice in a Norwegian convenience sample. Nutrients, 10(2), 230. | www.mdpi.com/2072-6643/10/2/230 |
Chapter 10 | 171 | Larsson, C. L. and Johansson, G. K. (2002). Dietary intake and nutritional status of young vegans and omnivores in Sweden. American Journal of Clinical Nutrition, 76(1), 100–6. | academic.oup.com/ajcn/article-abstract/76/1/100/4689466 |
Chapter 10 | 172 | Judd, P. A., Long, A., Butcher, M., Caygill, C. P. and Diplock, A. T. (1997). Vegetarians and vegans may be most at risk from low selenium intakes. BMJ, 314(7097), 1834. | www.ncbi.nlm.nih.gov/pmc/articles/pmc2126932/ |
Chapter 10 | 173 | Saunders, A. V., Davis, B. C. and Garg, M. L. (2013). Omega‐3 polyunsaturated fatty acids and vegetarian diets. Medical Journal of Australia, 199, S22–6. | onlinelibrary.wiley.com/doi/abs/10.5694/mja11.11507 |
Chapter 10 | 174 | Harris, W. S. et al. (2009). Omega-6 fatty acids and risk for cardiovascular disease: A science advisory from the American Heart Association Nutrition Subcommittee of the Council on Nutrition, Physical Activity, and Metabolism; Council on Cardiovascular Nursing; and Council on Epidemiology and Prevention. Circulation, 119(6), 902–7. | www.ahajournals.org/doi/abs/10.1161/circulationaha.108.191627 |
Chapter 10 | 175 | Marklund, M. et al. (2019). Biomarkers of dietary omega-6 fatty acids and incident cardiovascular disease and mortality: An individual-level pooled analysis of 30 cohort studies. Circulation, 139(21), 2422–36. | www.ahajournals.org/doi/abs/10.1161/CIRCULATIONAHA.118.038908 |
Chapter 10 | 176 | Li, J., Guasch-Ferré, M., Li, Y. and Hu, F. B. (2020). Dietary intake and biomarkers of linoleic acid and mortality: Systematic review and meta-analysis of prospective cohort studies. American Journal of Clinical Nutrition, 112(1), 150–67. | academic.oup.com/ajcn/article-abstract/doi/10.1093/ajcn/nqz349/5727348 |
Chapter 10 | 177 | Calder, P. C. (2012). Mechanisms of action of (n-3) fatty acids. Journal of Nutrition, 142(3), 592S–9S. | academic.oup.com/jn/article-abstract/142/3/592S/4630968 |
Chapter 10 | 178 | Simopoulos, A. P. (2001). Evolutionary aspects of diet, essential fatty acids and cardiovascular disease. European Heart Journal Supplements, 3(suppl_D), D8–21. | academic.oup.com/eurheartjsupp/article-abstract/3/suppl_D/D8/369525 |
Chapter 10 | 179 | Davis, B. C. and Kris-Etherton, P. M. (2003). Achieving optimal essential fatty acid status in vegetarians: Current knowledge and practical implications. American Journal of Cinical Nutrition, 78(3), 640S–6S. | academic.oup.com/ajcn/article-abstract/78/3/640S/4690006 |
Chapter 10 | 180 | Gibson, R. A., Muhlhausler, B. and Makrides, M. (2011). Conversion of linoleic acid and alpha‐linolenic acid to long‐chain polyunsaturated fatty acids (LCPUFAs), with a focus on pregnancy, lactation and the first 2 years of life. Maternal & Child Nutrition, 7, 17–26. | onlinelibrary.wiley.com/doi/abs/10.1111/j.1740-8709.2011.00299.x |
Chapter 10 | 181 | Gerster, H. (1998). Can adults adequately convert a-linolenic acid (18: 3n-3) to eicosapentaenoic acid (20: 5n-3) and docosahexaenoic acid (22: 6n-3)? International Journal for Vitamin and Nutrition Research, 68(3), 159–73. | www.ncbi.nlm.nih.gov/pubmed/9637947 |
Chapter 10 | 182 | Brossard, N., Croset, M., Pachiaudi, C., Riou, J. P., Tayot, J. L. and Lagarde, M. (1996). Retroconversion and metabolism of [13C]22:6n-3 in humans and rats after intake of a single dose of [13C]22:6n-3-triacylglycerols. American Journal of Clinical Nutrition, 64(4), 577–86. | pubmed.ncbi.nlm.nih.gov/8839503 |
Chapter 10 | 183 | Hu, Y., Hu, F. B. and Manson, J. E. (2019). Marine omega‐3 supplementation and cardiovascular disease: An updated meta‐analysis of 13 randomized controlled trials involving 127,477 participants. Journal of the American Heart Association, 8(19), e013543. | www.ahajournals.org/doi/abs/10.1161/JAHA.119.013543 |
Chapter 10 | 184 | Kris-Etherton, P. M. et al. (2019). Recent clinical trials shed new light on the cardiovascular benefits of omega-3 fatty acids. Methodist Debakey Cardiovascular Journal, 15(3), 171–8. | www.ncbi.nlm.nih.gov/pmc/articles/pmc6822654 |
Chapter 10 | 185 | Li, Z. H. et al. (2020). Associations of habitual fish oil supplementation with cardiovascular outcomes and all cause mortality: Evidence from a large population based cohort study. BMJ (Clinical Research Ed.), 368, m456. | www.bmj.com/content/368/bmj.m456 |
Chapter 10 | 186 | Manson, J. E. et al. (2019). Marine n-3 fatty acids and prevention of cardiovascular disease and cancer. New England Journal of Medicine, 380(1), 23–32. | www.nejm.org/doi/full/10.1056/NEJMoa1811403 |
Chapter 10 | 187 | ASCEND Study Collaborative Group, Bowman, L. et al. (2018). Effects of n-3 fatty acid supplements in diabetes mellitus. New England Journal of Medicine, 379(16), 1540–50. | pubmed.ncbi.nlm.nih.gov/30146932 |
Chapter 10 | 188 | Huang, T., Yang, B., Zheng, J., Li, G., Wahlqvist, M. L. and Li, D. (2012). Cardiovascular disease mortality and cancer incidence in vegetarians: A meta-analysis and systematic review. Annals of Nutrition and Metabolism, 60(4), 233–40. | www.karger.com/Article/FullText/337301 |
Chapter 10 | 189 | Key, T. J. et al. (1999). Mortality in vegetarians and nonvegetarians: Detailed findings from a collaborative analysis of 5 prospective studies. American Journal of Clinical Nutrition, 70(3), 516s–24s. | academic.oup.com/ajcn/article-abstract/70/3/516s/4714974 |
Chapter 10 | 190 | Bhatt, D. L. et al. (2019). Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. New England Journal of Medicine, 380(1), 11–22. | www.nejm.org/doi/full/10.1056/nejmoa1812792 |
Chapter 10 | 191 | Middleton, P., Gomersall, J. C., Gould, J. F., Shepherd, E., Olsen, S. F. and Makrides, M. (2018). Omega‐3 fatty acid addition during pregnancy. Cochrane Database of Systematic Reviews, (11), CD003402. | www.ncbi.nlm.nih.gov/pmc/articles/pmc6516961 |
Chapter 10 | 192 | Arterburn, L. M., Oken, H. A., Bailey Hall, E., Hamersley, J., Kuratko, C. N. and Hoffman, J. P. (2008). Algal-oil capsules and cooked salmon: Nutritionally equivalent sources of docosahexaenoic acid. Journal of the American Dietetic Association, 108(7), 1204–9. | www.sciencedirect.com/science/article/pii/S0002822308005129 |
Chapter 10 | 193 | Kagan, M. L., West, A. L., Zante, C. and Calder, P. C. (2013). Acute appearance of fatty acids in human plasma: A comparative study between polar-lipid rich oil from the microalgae Nannochloropsis oculata and krill oil in healthy young males. Lipids in Health and Disease, 12(102). | link.springer.com/article/10.1186/1476-511X-12-102 |
Chapter 10 | 194 | Ryan, L. and Symington, A. M. (2015). Algal-oil supplements are a viable alternative to fish-oil supplements in terms of docosahexaenoic acid (22: 6n-3; DHA). Journal of Functional Foods, 19, 852–8. | www.sciencedirect.com/science/article/pii/S1756464614002229 |
Chapter 10 | 195 | O’Leary, F. and Samman, S. (2010). Vitamin B12 in health and disease. Nutrients, 2(3), 299–316. | www.mdpi.com/2072-6643/2/3/299 |
Chapter 10 | 196 | Zeuschner, C. L., Hokin, B. D., Marsh, K. A., Saunders, A. V., Reid, M. A. and Ramsay, M. R. (2013). Vitamin B12 and vegetarian diets. Medical Journal of Australia, 199, S27–32. | onlinelibrary.wiley.com/doi/abs/10.5694/mja11.11509 |
Chapter 10 | 197 | Tucker, K. L., Rich, S., Rosenberg, I., Jacques, P., Dallal, G., Wilson, P. W. and Selhub, J. (2000). Plasma vitamin B-12 concentrations relate to intake source in the Framingham Offspring study. American Journal of Clinical Nutrition, 71(2), 514–22. | www.ncbi.nlm.nih.gov/pubmed/10648266 |
Chapter 10 | 198 | Briani, C., Dalla Torre, C., Citton, V., Manara, R., Pompanin, S., Binotto, G. and Adami, F. (2013). Cobalamin deficiency: Clinical picture and radiological findings. Nutrients, 5(11), 4521–39. | www.mdpi.com/2072-6643/5/11/4521 |
Chapter 10 | 199 | Hariz, A. and Bhattacharya, P. T. (2020). Megaloblastic Anemia. In StatPearls [Internet]. StatPearls Publishing, Treasure Island. | www.ncbi.nlm.nih.gov/books/NBK537254 |
Chapter 10 | 200 | Molloy, A. M. et al. (2009). Maternal vitamin B12 status and risk of neural tube defects in a population with high neural tube defect prevalence and no folic acid fortification. Pediatrics, 123(3), 917–23. | pediatrics.aappublications.org/content/123/3/917 |
Chapter 10 | 201 | Zhang, T., Xin, R., Gu, X., Wang, F., Pei, L., Lin, L., Chen, G., Wu, J. and Zheng, X. (2009). Maternal serum vitamin B12, folate and homocysteine and the risk of neural tube defects in the offspring in a high-risk area of China. Public Health Nutrition, 12(5), 680–6. | pubmed.ncbi.nlm.nih.gov/18547453 |
Chapter 10 | 202 | Ratan, S. K. et al. (2008). Evaluation of the levels of folate, vitamin B12, homocysteine and fluoride in the parents and the affected neonates with neural tube defect and their matched controls. Pediatric Surgery International, 24(7), 803. | link.springer.com/content/pdf/10.1007/s00383-008-2167-z.pdf |
Chapter 10 | 203 | Australian Government National Health and Medical Research Council and New Zealand Ministry of Health. (2018). Vitamin B12. Nutrient Reference Values for Australia and New Zealand. | www.nrv.gov.au/nutrients/vitamin-b12 |
Chapter 10 | 204 | Obeid, R., Heil, S. G., Verhoeven, M., Van Den Heuvel, E. G., De Groot, L. C. P. G. M., and Eussen, S. J. (2019). Vitamin B12 intake from animal foods, biomarkers and health aspects. Frontiers in Nutrition, 6, 93. | www.frontiersin.org/articles/10.3389/fnut.2019.00093/abstract |
Chapter 10 | 205 | Pitkin, R. M., Allen, L. H., Bailey, L. B. and Bernfield, M. (2000). Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin and choline. National Academies Press, Washington, D.C. | www.ncbi.nlm.nih.gov/books/NBK114310 |
Chapter 10 | 206 | DSM in Animal Nutrition & Health. Vitamin B12. DSM. | www.dsm.com/markets/anh/en_US/Compendium/ruminants/vitamin_B12.html |
Chapter 10 | 207 | Rooke, J. Do carnivores need Vitamin B12 supplements? Baltimore Post-Examiner. 30 October 2013. | baltimorepostexaminer.com/carnivores-need-vitamin-b12-supplements/2013/10/30 |
Chapter 10 | 208 | Carmel, R. (2008). How I treat cobalamin (vitamin B12) deficiency. Blood, 112(6), 2214–21. | www.ncbi.nlm.nih.gov/pmc/articles/PMC2532799 |
Chapter 10 | 209 | Spence, J. D. (2020). The need for clinical judgement in the application of evidence-based medicine. BMJ Evidence-Based Medicine, 25(5), 172–7. | ebm.bmj.com/content/25/5/172.abstract |
Chapter 10 | 210 | Linnell, J. C., Smith, A. D., Smith, C. L., Wilson, J. and Matthews, D. M. (1968). Effects of smoking on metabolism and excretion of vitamin B12. BMJ, 2(5599), 215. | www.ncbi.nlm.nih.gov/pmc/articles/PMC1985886 |
Chapter 10 | 211 | Van Leeuwen, J. P. T. M., Van Driel, M., Van Den Bemd, G. J. C. M. and Pols, H. A. P. (2001). Vitamin D control of osteoblast function and bone extracellular matrix mineralization. Critical Reviews in Eukaryotic Gene Expression, 11(1–3). | www.ncbi.nlm.nih.gov/pubmed/11693961 |
Chapter 10 | 212 | Nair, R. and Maseeh, A. (2012). Vitamin D: The ‘sunshine’ vitamin. Journal of Pharmacology & Pharmacotherapeutics, 3(2), 118–26. | www.ncbi.nlm.nih.gov/pmc/articles/PMC3356951 |
Chapter 10 | 213 | Maurya, V. K. and Aggarwal, M. (2017). Factors influencing the absorption of vitamin D in GIT: An overview. Journal of Food Science and Technology, 54(12), 3753–65. | link.springer.com/article/10.1007/s13197-017-2840-0 |
Chapter 10 | 214 | Nowson, C. A. and Margerison, C. (2002). Vitamin D intake and vitamin D status of Australians. Medical Journal of Australia, 177(3), 149–52. | onlinelibrary.wiley.com/doi/abs/10.5694/j.1326-5377.2002.tb04702.x |
Chapter 10 | 215 | Ko, J. A., Lee, B. H., Lee, J. S. and Park, H. J. (2008). Effect of UV-B exposure on the concentration of vitamin D2 in sliced shiitake mushroom (Lentinus edodes) and white button mushroom (Agaricus bisporus). Journal of Agricultural and Food Chemistry, 56(10), 3671–4. | pubs.acs.org/doi/abs/10.1021/jf073398s |
Chapter 10 | 216 | Al-Daghri, N. M., Al-Attas, O., Yakout, S., Aljohani, N., Al-Fawaz, H. and Alokail, M. S. (2015). Dietary products consumption in relation to serum 25-hydroxyvitamin D and selenium level in Saudi children and adults. International Journal of Clinical and Experimental Medicine, 8(1), 1305. | www.ncbi.nlm.nih.gov/pmc/articles/PMC4358586 |
Chapter 10 | 217 | Daly, R. M. et al. (2012). Prevalence of vitamin D deficiency and its determinants in Australian adults aged 25 years and older: A national, population-based study. Clinical Endocrinology, 77(1), 26–35. | onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2265.2011.04320.x |
Chapter 10 | 218 | Tavakoli, F., Namakin, K. and Zardast, M. (2016). Vitamin D supplementation and high-density lipoprotein cholesterol: A study in healthy school children. Iranian Journal of Pediatrics, 26(4). | www.ncbi.nlm.nih.gov/pmc/articles/PMC5045666 |
Chapter 10 | 219 | Holick, M. F. (2004). Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. American Journal of Clinical Nutrition, 80(6), 1678S–88S. | academic.oup.com/ajcn/article/80/6/1678S/4690512 |
Chapter 10 | 220 | Zhang, R. and Naughton, D. P. (2010). Vitamin D in health and disease: Current perspectives. Nutrition Journal, 9(1), 65. | nutritionj.biomedcentral.com/articles/10.1186/1475-2891-9-65 |
Chapter 10 | 221 | Spedding, S. (2014). Vitamin D and depression: A systematic review and meta-analysis comparing studies with and without biological flaws. Nutrients, 6(4), 1501–18. | www.mdpi.com/2072-6643/6/4/1501 |
Chapter 10 | 222 | Crowe, F. L., Steur, M., Allen, N. E., Appleby, P. N., Travis, R. C. and Key, T. J. (2011). Plasma concentrations of 25-hydroxyvitamin D in meat eaters, fish eaters, vegetarians and vegans: Results from the EPIC-Oxford study. Public Health Nutrition, 14(2), 340–6. | www.ncbi.nlm.nih.gov/pubmed/20854716 |
Chapter 10 | 223 | Chan, J., Jaceldo-Siegl, K. and Fraser, G. E. (2009). Serum 25-hydroxyvitamin D status of vegetarians, partial vegetarians, and nonvegetarians: The Adventist Health Study-2. American Journal of Clinical Nutrition, 89(5), 1686S–92S. | academic.oup.com/ajcn/article-abstract/89/5/1686S/4596962 |
Chapter 10 | 224 | Hansen, T. H. et al. (2018). Bone turnover, calcium homeostasis, and vitamin D status in Danish vegans. European Journal of Clinical Nutrition, 72(7), 1046–54. | www.nature.com/articles/s41430-017-0081-y |
Chapter 10 | 225 | Huotari, A. and Herzig, K. H. (2008). Vitamin D and living in northern latitudes: An endemic risk area for vitamin D deficiency. International Journal of Circumpolar Health, 67(2–3), 164–78. | www.tandfonline.com/doi/abs/10.3402/ijch.v67i2-3.18258 |
Chapter 10 | 226 | Australian Government National Health and Medical Research Council and New Zealand Ministry of Health. (2014). Vitamin D. Nutrient Reference Values for Australia and New Zealand. | www.nrv.gov.au/nutrients/vitamin-d |
Chapter 10 | 227 | Osteoporosis Australia Medical & Scientific Advisory Committee. (2017). Vitamin D. Osteoporosis Australia. | www.osteoporosis.org.au/vitamin-d |
Chapter 10 | 228 | Osteoporosis Australia. (2012). Vitamin D: Consumer guide. Osteoporosis Australia. | www.osteoporosis.org.au/sites/default/files/files/vitdconsumerguide.pdf |
Chapter 10 | 229 | Cancer Council Australia. Vitamin D. Cancer Council. | www.cancer.org.au/cancer-information/causes-and-prevention/sun-safety/vitamin-d |
Chapter 10 | 230 | Tripkovic, L. et al. (2012). Comparison of vitamin D2 and vitamin D3 supplementation in raising serum 25-hydroxyvitamin D status: a systematic review and meta-analysis. American Journal of Clinical Nutrition, 95(6), 1357–64. | academic.oup.com/ajcn/article-abstract/95/6/1357/4568382 |
Chapter 10 | 231 | Lehmann, U., Hirche, F., Stangl, G. I., Hinz, K., Westphal, S. and Dierkes, J. (2013). Bioavailability of vitamin D2 and D3 in healthy volunteers, a randomized placebo-controlled trial. Journal of Clinical Endocrinology & Metabolism, 98(11), 4339–45. | academic.oup.com/jcem/article-abstract/98/11/4339/2834818 |
Chapter 10 | 232 | Bischoff-Ferrari, H. A. (2008). Optimal serum 25-hydroxyvitamin D levels for multiple health outcomes. Advances in Experimental Medicine and Biology, 624, 55. | www.ncbi.nlm.nih.gov/pubmed/18348447 |
Chapter 10 | 233 | Heaney, R. P. (2005). The vitamin D requirement in health and disease. Journal of Steroid Biochemistry and Molecular Biology, 97(1–2), 13–19. | www.sciencedirect.com/science/article/pii/S0960076005002396 |
Chapter 10 | 234 | Bischoff-Ferrari, H. A., Shao, A., Dawson-Hughes, B., Hathcock, J., Giovannucci, E. and Willett, W. C. (2010). Benefit–risk assessment of vitamin D supplementation. Osteoporosis International, 21(7), 1121–32. | link.springer.com/article/10.1007%252Fs00198-009-1119-3 |
Chapter 10 | 235 | Norris, J. and Messina, V. (2020). Vegan for Life: Everything you need to know to be healthy on a plant-based diet. Hachette Books, London. | www.hachette.com.au/jack-norris-virginia-messina/vegan-for-life-everything-you-need-to-know-to-be-healthy-on-a-plant-based-diet |
Chapter 10 | 236 | Ekwaru, J. P., Zwicker, J. D., Holick, M. F., Giovannucci, E. and Veugelers, P. J. (2014). The importance of body weight for the dose-response relationship of oral vitamin D supplementation and serum 25-hydroxyvitamin D in healthy volunteers. PLOS One, 9(11), e111265. | journals.plos.org/plosone/article?id=10.1371/journal.pone.0111265 |
Chapter 10 | 237 | American Geriatrics Society Workgroup on Vitamin D Supplementation for Older Adults. (2014). Recommendations abstracted from the American Geriatrics Society Consensus Statement on vitamin D for Prevention of Falls and Their Consequences. Journal of the American Geriatrics Society, 62(1), 147–52. | pubmed.ncbi.nlm.nih.gov/24350602 |
Chapter 10 | 238 | Barbro, N., Brittmarie, S. and Cederblad, Å. K. E. (1985). Reduction of the phytate content of bran by leavening in bread and its effect on zinc absorption in man. British Journal of Nutrition, 53(1), 47–53. | www.ncbi.nlm.nih.gov/pubmed/2998440%20 |
Chapter 10 | 239 | Gibson, R. S., Perlas, L. and Hotz, C. (2006). Improving the bioavailability of nutrients in plant foods at the household level. Proceedings of the Nutrition Society, 65(2), 160–8. | www.ncbi.nlm.nih.gov/pubmed/16672077 |
Chapter 10 | 240 | Benincasa, P., Falcinelli, B., Lutts, S., Stagnari, F. and Galieni, A. (2019). Sprouted grains: A comprehensive review. Nutrients, 11(2), 421. | www.mdpi.com/2072-6643/11/2/421 |
Chapter 10 | 241 | Luo, Y. and Xie, W. (2014). Effect of soaking and sprouting on iron and zinc availability in green and white faba bean (Vicia faba L.). Journal of Food Science and Technology, 51(12), 3970–6. | link.springer.com/article/10.1007/s13197-012-0921-7 |
Chapter 10 | 242 | Schlemmer, U., Frølich, W., Prieto, R. M. and Grases, F. (2009). Phytate in foods and significance for humans: Food sources, intake, processing, bioavailability, protective role and analysis. Molecular Nutrition & Food Research, 53(S2), S330–75. | onlinelibrary.wiley.com/doi/abs/10.1002/mnfr.200900099 |
Chapter 10 | 243 | Chai, W. and Liebman, M. (2005). Effect of different cooking methods on vegetable oxalate content. Journal of Agricultural and Food Chemistry, 53(8), 3027–30. | pubs.acs.org/doi/abs/10.1021/jf048128d |
Chapter 10 | 244 | Australian Institute of Health and Welfare. (2020). Osteoporosis. AIHW, Australian Government, Canberra. | www.aihw.gov.au/reports/chronic-musculoskeletal-conditions/osteoporosis |
Chapter 10 | 245 | Sözen, T., Özışık, L. and Başaran, N. Ç. (2017). An overview and management of osteoporosis. European Journal of Rheumatology, 4(1), 46. | www.ncbi.nlm.nih.gov/pmc/articles/pmc5335887 |
Chapter 10 | 246 | Osteoporosis Australia Medical & Scientific Advisory Committee. (2017). Risk factors. Osteoporosis Australia. | www.osteoporosis.org.au/risk-factors |
Chapter 10 | 247 | Rosen, C. J. (2020). The epidemiology and pathogenesis of osteoporosis. In Endotext [Internet]. MDText.com, South Dartmouth. | www.ncbi.nlm.nih.gov/books/NBK279134 |
Chapter 10 | 248 | Mangels, A. R. (2014). Bone nutrients for vegetarians. American Journal of Clinical Nutrition, 100(suppl_1), 469S–75S. | academic.oup.com/ajcn/article-abstract/100/suppl_1/469S/4576666 |
Chapter 10 | 249 | Akbari, S. and Rasouli-Ghahroudi, A. A. (2018). Vitamin K and bone metabolism: A review of the latest evidence in preclinical studies. BioMed Research International, 2018, 4629383. | www.hindawi.com/journals/bmri/2018/4629383 |
Chapter 10 | 250 | Roman-Garcia, P. et al. (2014). Vitamin B 12–dependent taurine synthesis regulates growth and bone mass. Journal of Clinical Investigation, 124(7), 2988–3002. | www.jci.org/articles/view/72606 |
Chapter 10 | 251 | Australian Government National Health and Medical Research Council and New Zealand Ministry of Health. (2014). Vitamin K. Nutrient Reference Values for Australia and New Zealand. | www.nrv.gov.au/nutrients/vitamin-k |
Chapter 10 | 252 | Conly, J. and Stein, K. (1994). Reduction of vitamin K2 concentrations in human liver associated with the use of broad spectrum antimicrobials. Clinical and Investigative Medicine, 17(6), 531. | www.ncbi.nlm.nih.gov/pubmed/7895417 |
Chapter 10 | 253 | Knapen, M. H., Drummen, N. E., Smit, E., Vermeer, C. and Theuwissen, E. (2013). Three-year low-dose menaquinone-7 supplementation helps decrease bone loss in healthy postmenopausal women. Osteoporosis International, 24(9), 2499–507. | link.springer.com/article/10.1007/s00198-013-2325-6 |
Chapter 10 | 254 | Kaneki, M. et al. (2001). Japanese fermented soybean food as the major determinant of the large geographic difference in circulating levels of vitamin K2: Possible implications for hip-fracture risk. Nutrition, 17(4), 315–21. | www.sciencedirect.com/science/article/pii/S0899900700005542 |
Chapter 10 | 255 | NHS. (2020). Calcium. NHS. | www.nhs.uk/conditions/vitamins-and-minerals/calcium/ |
Chapter 10 | 256 | Institute of Medicine (US) Committee to Review Dietary Reference Intakes for Vitamin D and Calcium; Ross, A. C., Taylor, C. L., Yaktine, A.L. et al. (eds). (2011). 5 dietary reference intakes for adequacy: calcium and vitamin D. In Dietary Reference Intakes for Calcium and Vitamin D. National Academies Press, Washington, D.C. | www.ncbi.nlm.nih.gov/books/NBK56056 |
Chapter 10 | 257 | Australian Government National Health and Medical Research Council and New Zealand Ministry of Health. (2014). Calcium. Nutrient Reference Values for Australia and New Zealand. | www.nrv.gov.au/nutrients/calcium |
Chapter 10 | 258 | Chapter 11. Calcium. Food and Agriculture Organization of the United Nations. | www.fao.org/3/y2809e/y2809e0h.htm |
Chapter 10 | 259 | Willett, W. C. and Ludwig, D. S. (2020). Milk and health. New England Journal of Medicine, 382(7), 644–54. | www.nejm.org/doi/full/10.1056/NEJMra1903547 |
Chapter 10 | 260 | Bolland, M. J., Leung, W., Tai, V., Bastin, S., Gamble, G. D., Grey, A. and Reid, I. R. (2015). Calcium intake and risk of fracture: Systematic review. BMJ, 351, h4580. | www.bmj.com/content/351/bmj.h4580 |
Chapter 10 | 261 | De Laet, C. et al. (2005). Body mass index as a predictor of fracture risk: A meta-analysis. Osteoporosis International, 16(11), 1330–8. | link.springer.com/article/10.1007/s00198-005-1863-y |
Chapter 10 | 262 | Warensjö, E., Byberg, L., Melhus, H., Gedeborg, R., Mallmin, H., Wolk, A. and Michaëlsson, K. (2011). Dietary calcium intake and risk of fracture and osteoporosis: Prospective longitudinal cohort study. BMJ, 342, d1473. | www.bmj.com/content/342/bmj.d1473 |
Chapter 10 | 263 | Beck, B. R., Daly, R. M., Singh, M. A. and Taaffe, D. R. (2017). Exercise and Sports Science Australia (ESSA) position statement on exercise prescription for the prevention and management of osteoporosis. Journal of Science and Medicine in Sport, 20(5), 438–45. | pubmed.ncbi.nlm.nih.gov/27840033 |
Chapter 10 | 264 | 5.7 Recommendations for preventing osteoporosis. World Health Organization. | www.who.int/dietphysicalactivity/publications/trs916/en/gsfao_osteo.pdf |
Chapter 10 | 265 | Appleby, P., Roddam, A., Allen, N. and Key, T. (2007). Comparative fracture risk in vegetarians and nonvegetarians in EPIC-Oxford. European Journal of Clinical Nutrition, 61(12), 1400–6. | www.nature.com/articles/1602659 |
Chapter 10 | 266 | Tong, T. Y. et al. (2020). Vegetarian and vegan diets and risks of total and site-specific fractures: Results from the prospective EPIC-Oxford study. BMC Medicine, 18(1), 1–15. | www.ncbi.nlm.nih.gov/pmc/articles/PMC7682057 |
Chapter 10 | 267 | Hill, S. and Nagra, M. (2021). Are vegans at greater risk of fracture? Plant Proof. | plantproof.com/are-vegans-at-greater-risk-of-fracture |
Chapter 10 | 268 | Ho-Pham, L. T., Vu, B. Q., Lai, T. Q., Nguyen, N. D. and Nguyen, T. V. (2012). Vegetarianism, bone loss, fracture and vitamin D: A longitudinal study in Asian vegans and non-vegans. European Journal of Clinical Nutrition, 66(1), 75–82. | www.nature.com/articles/ejcn2011131 |
Chapter 10 | 269 | Menal Puey, S., Marques-Lopes, I. and Morán del Ruste, M. (2018). Food and nutrient intake in Spanish vegetarians and vegans. Progress in Nutrition, 20(2), 189–96. | www.researchgate.net/publication/327022559_Food_and_nutrient_intake_in_Spanish_vegetarians_and_vegans |
Chapter 10 | 270 | Weaver, C. M., Heaney, R. P., Connor, L., Martin, B. R., Smith, D. L. and Nielsen, S. (2002). Bioavailability of calcium from tofu as compared with milk in premenopausal women. Journal of Food Science, 67(8), 3144–7. | onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2621.2002.tb08873.x |
Chapter 10 | 271 | Weaver, C. M., Proulx, W. R. and Heaney, R. (1999). Choices for achieving adequate dietary calcium with a vegetarian diet. American Journal of Clinical Nutrition, 70(3 Suppl), 543S–8S. | academic.oup.com/ajcn/article-abstract/70/3/543s/4714998 |
Chapter 10 | 272 | Cheung, A. T. F., Wilcox, G., Strauss, B., Walker, K. Z., Ashton, J. F. and Stojanovska, L. (2008). Calcium absorption in Australian osteopenic post menopausal women: Comparative study of fortified soymilk to fermented fortified soymilk. Asia Pacific Journal of Clinical Nutrition, 17, S44. | search.proquest.com/openview/db3b7a0c2b14fb1bb19cdba4b6959c76/1 |
Chapter 10 | 273 | Zhao, Y., Martin, B. R. and Weaver, C. M. (2005). Calcium bioavailability of calcium carbonate fortified soymilk is equivalent to cow’s milk in young women. Journal of Nutrition, 135(10), 2379–82. | academic.oup.com/jn/article-abstract/135/10/2379/4669853 |
Chapter 10 | 274 | Tobacman, J. K. (2001). Review of harmful gastrointestinal effects of carrageenan in animal experiments. Environmental Health Perspectives, 109(10), 983–94. | ehp.niehs.nih.gov/doi/abs/10.1289/ehp.01109983 |
Chapter 10 | 275 | Borthakur, A., Bhattacharyya, S., Dudeja, P. K. and Tobacman, J. K. (2007). Carrageenan induces interleukin-8 production through distinct Bcl10 pathway in normal human colonic epithelial cells. American Journal of Physiology: Gastrointestinal and Liver Physiology, 292(3), G829–38. | journals.physiology.org/doi/abs/10.1152/ajpgi.00380.2006 |
Chapter 10 | 276 | Borthakur, A., Bhattacharyya, S., Anbazhagan, A. N., Kumar, A., Dudeja, P. K. and Tobacman, J. K. (2012). Prolongation of carrageenan-induced inflammation in human colonic epithelial cells by activation of an NFκB‐BCL10 loop. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease, 1822(8), 1300–7. | www.sciencedirect.com/science/article/pii/S0925443912001032 |
Chapter 10 | 277 | Niaz, K., Zaplatic, E. and Spoor, J. (2018). Extensive use of monosodium glutamate: A threat to public health? EXCLI journal, 17, 273. | www.ncbi.nlm.nih.gov/pmc/articles/pmc5938543 |
Chapter 10 | 278 | Martino, J. V., Van Limbergen, J. and Cahill, L. E. (2017). The role of carrageenan and carboxymethylcellulose in the development of intestinal inflammation. Frontiers in Pediatrics, 5, 96. | www.frontiersin.org/articles/10.3389/fped.2017.00096 |
Chapter 10 | 279 | Bae, Y. J. et al. (2011). Magnesium supplementation through seaweed calcium extract rather than synthetic magnesium oxide improves femur bone mineral density and strength in ovariectomized rats. Biological Trace Element Research, 144(1–3), 992–1002. | link.springer.com/article/10.1007/s12011-011-9073-2 |
Chapter 10 | 280 | Zenk, J. L., Frestedt, J. L. and Kuskowski, M. A. (2018). Effect of calcium derived from Lithothamnion sp. on markers of calcium metabolism in premenopausal women. Journal of Medicinal Food, 21(2), 154–8. | www.liebertpub.com/doi/abs/10.1089/jmf.2017.0023 |
Chapter 10 | 281 | Adluri, R. S., Zhan, L., Bagchi, M., Maulik, N. and Maulik, G. (2010). Comparative effects of a novel plant-based calcium supplement with two common calcium salts on proliferation and mineralization in human osteoblast cells. Molecular and Cellular Biochemistry, 340(1–2), 73–80. | link.springer.com/article/10.1007/s11010-010-0402-0 |
Chapter 10 | 282 | Sakhaee, K., Bhuket, T., Adams-Huet, B. and Rao, D. S. (1999). Meta-analysis of calcium bioavailability: A comparison of calcium citrate with calcium carbonate. American Journal of Therapeutics, 6(6), 313–21. | europepmc.org/article/med/11329115 |
Chapter 10 | 283 | Harvard Women’s Health Watch. How much calcium do you really need? Harvard Health Publishing. 11 September 2019. | www.health.harvard.edu/staying-healthy/how-much-calcium-do-you-really-need |
Chapter 10 | 284 | www.health.harvard.edu/staying-healthy/how-much-calcium-do-you-really-need | www.bmj.com/content/bmj/341/bmj.c3691.full.pdf |
Chapter 10 | 285 | Yang, C., Shi, X., Xia, H., Yang, X., Liu, H., Pan, D. and Sun, G. (2020). The evidence and controversy between dietary calcium intake and calcium supplementation and the risk of cardiovascular disease: A systematic review and meta-analysis of cohort studies and randomized controlled trials. Journal of the American College of Nutrition, 39(4), 352–70. | www.tandfonline.com/doi/abs/10.1080/07315724.2019.1649219 |
Chapter 10 | 286 | Australian Institute of Health and Welfare. (2011). Mandatory folic acid and iodine fortification in Australia and New Zealand: Supplement to the baseline report for monitoring. Cat. no. PHE 153. AIHW, Australian Government, Canberra. | www.aihw.gov.au/getmedia/5bd11641-6fb0-4fd3-a509-3b35fe3253b7/13526.pdf |
Chapter 10 | 287 | Groufh-Jacobsen, S. et al. (2020). Vegans, vegetarians and pescatarians are at risk of iodine deficiency in Norway. Nutrients, 12(11), 3555. | www.mdpi.com/2072-6643/12/11/3555 |
Chapter 10 | 288 | Fallon, N. and Dillon, S. A. (2020). Low intakes of iodine and selenium amongst vegan and vegetarian women highlight a potential nutritional vulnerability. Frontiers in Nutrition, 7, 72. | www.ncbi.nlm.nih.gov/pmc/articles/PMC7251157 |
Chapter 10 | 289 | Krajcovicová-Kudlácková, M., Bucková, K., Klimes, I. and Seboková, E. (2003). Iodine deficiency in vegetarians and vegans. Annals of Nutrition and Metabolism, 47(5), 183–5. | www.karger.com/Article/Abstract/70483 |
Chapter 10 | 290 | Australian Thyroid Foundation. Iodine Deficiency. Australian Thyroid Foundation. | thyroidfoundation.org.au/Iodine-Deficiency |
Chapter 10 | 291 | Zimmermann, M. B., Jooste, P. L. and Pandav, C. S. (2008). Iodine-deficiency disorders. The Lancet, 372(9645), 1251–62. | pubmed.ncbi.nlm.nih.gov/18676011 |
Chapter 10 | 292 | Kapil, U. (2007). Health consequences of iodine deficiency. Sultan Qaboos University Medical Journal, 7(3), 267. | www.ncbi.nlm.nih.gov/pmc/articles/PMC3074887 |
Chapter 10 | 293 | Niwattisaiwong, S., Burman, K. D. and Li-Ng, M. (2017). Iodine deficiency: Clinical implications. Cleveland Clinic Journal of Medicine, 84(3), 236–44. | pubmed.ncbi.nlm.nih.gov/28322679/ |
Chapter 10 | 294 | Dillon, J. C. and Milliez, J. (2000). Reproductive failure in women living in iodine deficient areas of West Africa. BJOG: An International Journal of Obstetrics and Gynaecology, 107(5), 631–6. | obgyn.onlinelibrary.wiley.com/doi/abs/10.1111/j.1471-0528.2000.tb13305.x |
Chapter 10 | 295 | Australian Government National Health and Medical Research Council and New Zealand Ministry of Health. (2014). Iodine. Nutrient Reference Values for Australia and New Zealand. | www.nrv.gov.au/nutrients/iodine |
Chapter 10 | 296 | Ahad, F. and Ganie, S. A. (2010). Iodine, iodine metabolism and iodine deficiency disorders revisited. Indian Journal of Endocrinology and Metabolism, 14(1), 13. | www.ncbi.nlm.nih.gov/pmc/articles/PMC3063534 |
Chapter 10 | 297 | Andersson, M., de Benoist, B. and Rogers, L. (2010). Epidemiology of iodine deficiency: Salt iodisation and iodine status. Best Practice & Research Clinical Endocrinology & Metabolism, 24(1), 1–11. | pubmed.ncbi.nlm.nih.gov/20172466 |
Chapter 10 | 298 | Amster, E., Tiwary, A. and Schenker, M. B. (2007). Case report: Potential arsenic toxicosis secondary to herbal kelp supplement. Environmental Health Perspectives, 115(4), 606–8. | ehp.niehs.nih.gov/doi/abs/10.1289/ehp.9495 |
Chapter 10 | 299 | Schenker, M., Amster, E. and Tiwary, A. (2007). Arsenic in herbal kelp supplements: Schenker et al. respond. Environmental Health Perspectives, 115(12), A576–7. | ehp.niehs.nih.gov/doi/full/10.1289/ehp.10393R |
Chapter 10 | 300 | Johnson-Wimbley, T. D. and Graham, D. Y. (2011). Diagnosis and management of iron deficiency anemia in the 21st century. Therapeutic Advances in Gastroenterology, 4(3), 177–84. | journals.sagepub.com/doi/abs/10.1177/1756283X11398736 |
Chapter 10 | 301 | Camaschella, C. (2015). Iron-deficiency anemia. New England Journal of Medicine, 372(19), 1832–43. | www.nejm.org/doi/full/10.1056/NEJMra1401038 |
Chapter 10 | 302 | Lopez, A., Cacoub, P., Macdougall, I. C. and Peyrin-Biroulet, L. (2016). Iron deficiency anaemia. The Lancet, 387(10021), 907–16. | www.thelancet.com/pdfs/journals/lancet/PIIS0140-6736(15)60865-0.pdf |
Chapter 10 | 303 | Jimenez, K., Kulnigg-Dabsch, S. and Gasche, C. (2015). Management of iron deficiency anemia. Gastroenterology & Hepatology, 11(4), 241. | www.ncbi.nlm.nih.gov/pmc/articles/pmc4836595 |
Chapter 10 | 304 | Australian Government National Health and Medical Research Council and New Zealand Ministry of Health. (2014). Iron. Nutrient Reference Values for Australia and New Zealand. | www.nrv.gov.au/nutrients/iron |
Chapter 10 | 305 | Zhao, L., Zhang, X., Shen, Y., Fang, X., Wang, Y. and Wang, F. (2015). Obesity and iron deficiency: A quantitative meta-analysis. Obesity Reviews, 16(12), 1081–93. | pubmed.ncbi.nlm.nih.gov/26395622 |
Chapter 10 | 306 | Alaunyte, I., Stojceska, V. and Plunkett, A. (2015). Iron and the female athlete: A review of dietary treatment methods for improving iron status and exercise performance. Journal of the International Society of Sports Nutrition, 12(1), 38. | link.springer.com/article/10.1186/s12970-015-0099-2 |
Chapter 10 | 307 | Hunt, J. R. (2003). Bioavailability of iron, zinc, and other trace minerals from vegetarian diets. American Journal of Clinical Nutrition, 78(3), 633S–9S. | academic.oup.com/ajcn/article-abstract/78/3/633S/4690005 |
Chapter 10 | 308 | Saunders, A. V., Craig, W. J., Baines, S. K. and Posen, J. S. (2013). Iron and vegetarian diets. Medical Journal of Australia, 199(4), S11–16. | www.mja.com.au/journal/2013/199/4/iron-and-vegetarian-diets |
Chapter 10 | 309 | Bao, W., Rong, Y., Rong, S. and Liu, L. (2012). Dietary iron intake, body iron stores, and the risk of type 2 diabetes: A systematic review and meta-analysis. BMC Medicine, 10(1), 119. | link.springer.com/article/10.1186/1741-7015-10-119 |
Chapter 10 | 310 | Trumbo, P., Yates, A. A., Schlicker, S. and Poos, M. (2001). Dietary reference intakes: Vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Journal of the American Dietetic Association, 101(3), 294–301. | pubmed.ncbi.nlm.nih.gov/11269606 |
Chapter 10 | 311 | Hurrell, R. and Egli, I. (2010). Iron bioavailability and dietary reference values. American Journal of Clinical Nutrition, 91(5), 1461S–7S. | pubmed.ncbi.nlm.nih.gov/20200263 |
Chapter 10 | 312 | Better Health Channel. Nutrition – women’s extra needs. Department of Health & Human Services, State Government of Victoria. | www.betterhealth.vic.gov.au:443/health/healthyliving/nutrition-womens-extra-needs |
Chapter 10 | 313 | Pawlak, R., Berger, J. and Hines, I. (2018). Iron status of vegetarian adults: A review of literature. American Journal of Lifestyle Medicine, 12(6), 486–98. | journals.sagepub.com/doi/abs/10.1177/1559827616682933 |
Chapter 10 | 314 | genannt Bonsmann, S. S., Walczyk, T., Renggli, S. and Hurrell, R. F. (2008). Oxalic acid does not influence nonhaem iron absorption in humans: A comparison of kale and spinach meals. European Journal of Clinical Nutrition, 62(3), 336–41. | pubmed.ncbi.nlm.nih.gov/17440529 |
Chapter 10 | 315 | Fallah, A. A., Sarmast, E., Dehkordi, S. H., Engardeh, J., Mahmoodnia, L., Khaledifar, A. and Jafari, T. (2018). Effect of Chlorella supplementation on cardiovascular risk factors: A meta-analysis of randomized controlled trials. Clinical Nutrition, 37(6), 1892–901. | www.sciencedirect.com/science/article/pii/S0261561417313511 |
Chapter 10 | 316 | Panahi, Y., Badeli, R., Karami, G. R., Badeli, Z. and Sahebkar, A. (2015). A randomized controlled trial of 6-week Chlorella vulgaris supplementation in patients with major depressive disorder. Complementary Therapies in Medicine, 23(4), 598–602. | www.sciencedirect.com/science/article/pii/S0965229915001016 |
Chapter 10 | 317 | Rellán, S., Osswald, J., Saker, M., Gago-Martinez, A. and Vasconcelos, V. (2009). First detection of anatoxin-a in human and animal dietary supplements containing cyanobacteria. Food and Chemical Toxicology, 47(9), 2189–95. | www.sciencedirect.com/science/article/pii/S0278691509002762 |
Chapter 10 | 318 | Roy-Lachapelle, A., Solliec, M., Bouchard, M. F. and Sauvé, S. (2017). Detection of cyanotoxins in algae dietary supplements. Toxins, 9(3), 76. | www.mdpi.com/2072-6651/9/3/76 |
Chapter 10 | 319 | Zijp, I. M., Korver, O. and Tijburg, L. B. (2000). Effect of tea and other dietary factors on iron absorption. Critical Reviews in Food Science and Nutrition, 40(5), 371–98. | pubmed.ncbi.nlm.nih.gov/11029010 |
Chapter 10 | 320 | Deckers, J. (2016). Might a vegan diet be healthy, or even healthier? In Animal (De)Liberation: Should the consumption of animal products be banned? Ubiquity Press, London. | www.ubiquitypress.com/site/books/m/10.5334/bay/ |
Chapter 10 | 321 | Hurrell, R. F., Juillerat, M. A., Reddy, M. B., Lynch, S. R., Dassenko, S. A. and Cook, J. D. (1992). Soy protein, phytate, and iron absorption in humans. American Journal of Clinical Nutrition, 56(3), 573–8. | academic.oup.com/ajcn/article-abstract/56/3/573/4715420 |
Chapter 10 | 322 | Cook, J. D., Morck, T. A. and Lynch, S. R. (1981). The inhibitory effect of soy products on nonheme iron absorption in man. American Journal of Clinical Nutrition, 34(12), 2622–9. | pubmed.ncbi.nlm.nih.gov/7198374 |
Chapter 10 | 323 | Hurrell, R. F., Reddy, M. and Cook, J. D. (1999). Inhibition of non-haem iron absorption in man by polyphenolic-containing beverages. British Journal of Nutrition, 81(4), 289–95. | pubmed.ncbi.nlm.nih.gov/10999016 |
Chapter 10 | 324 | Gautam, S., Platel, K. and Srinivasan, K. (2010). Higher bioaccessibility of iron and zinc from food grains in the presence of garlic and onion. Journal of Agricultural and Food Chemistry, 58(14), 8426–9. | pubs.acs.org/doi/abs/10.1021/jf100716t |
Chapter 10 | 325 | Garcı́a-Casal, M. N. et al. (1998). Vitamin A and β-carotene can improve nonheme iron absorption from rice, wheat and corn by humans. Journal of Nutrition, 128(3), 646–50. | academic.oup.com/jn/article-abstract/128/3/646/4728862 |
Chapter 10 | 326 | Hallberg, L. (1981). Bioavailability of dietary iron in man. Annual Review of Nutrition, 1(1), 123–47. | www.annualreviews.org/doi/pdf/10.1146/annurev.nu.01.070181.001011 |
Chapter 10 | 327 | Hallberg, L. and Hulthén, L. (2000). Prediction of dietary iron absorption: An algorithm for calculating absorption and bioavailability of dietary iron. American Journal of Clinical Nutrition, 71(5), 1147–60. | pubmed.ncbi.nlm.nih.gov/10799377 |
Chapter 10 | 328 | Gianfredi, V., Nucci, D., Vannini, S., Villarini, M. and Moretti, M. (2017). In vitro biological effects of sulforaphane (SFN), epigallocatechin-3-gallate (EGCG), and curcumin on breast cancer cells: A systematic review of the literature. Nutrition and Cancer, 69(7), 969–78. | pubmed.ncbi.nlm.nih.gov/28872903 |
Chapter 10 | 329 | Rose, P., Huang, Q., Ong, C. N. and Whiteman, M. (2005). Broccoli and watercress suppress matrix metalloproteinase-9 activity and invasiveness of human MDA-MB-231 breast cancer cells. Toxicology and Applied Pharmacology, 209(2), 105–13. | pubmed.ncbi.nlm.nih.gov/15953625 |
Chapter 10 | 330 | Murillo, G. and Mehta, R. G. (2001). Cruciferous vegetables and cancer prevention. Nutrition and Cancer, 41(1–2), 17–28. | pubmed.ncbi.nlm.nih.gov/15953625 |
Chapter 10 | 331 | Soundararajan, P. and Kim, J. S. (2018). Anti-carcinogenic glucosinolates in cruciferous vegetables and their antagonistic effects on prevention of cancers. Molecules, 23(11), 2983. | www.mdpi.com/1420-3049/23/11/2983 |
Chapter 10 | 332 | Jeffery, E. H. and Keck, A. S. (2008). Translating knowledge generated by epidemiological and in vitro studies into dietary cancer prevention. Molecular Nutrition & Food Research, 52(S1), S7–17. | onlinelibrary.wiley.com/doi/abs/10.1002/mnfr.200700226 |
Chapter 10 | 333 | Kim, J. K. and Park, S. U. (2016). Current potential health benefits of sulforaphane. EXCLI Journal, 15, 571–7. | core.ac.uk/download/pdf/83041864.pdf |
Chapter 10 | 334 | Fahey, J. W., Holtzclaw, W. D., Wehage, S. L., Wade, K. L., Stephenson, K. K. and Talalay, P. (2015). Sulforaphane bioavailability from glucoraphanin-rich broccoli: Control by active endogenous myrosinase. PLOS One, 10(11), e0140963. | pubmed.ncbi.nlm.nih.gov/26524341 |
Chapter 10 | 335 | Okunade, O., Niranjan, K., Ghawi, S. K., Kuhnle, G. and Methven, L. (2018). Supplementation of the diet by exogenous myrosinase via mustard seeds to increase the bioavailability of sulforaphane in healthy human subjects after the consumption of cooked broccoli. Molecular Nutrition & Food Research, 62(18), 1700980. | onlinelibrary.wiley.com/doi/abs/10.1002/mnfr.201700980 |
Chapter 10 | 336 | Ghawi, S. K., Methven, L. and Niranjan, K. (2013). The potential to intensify sulforaphane formation in cooked broccoli (Brassica oleracea var. italica) using mustard seeds (Sinapis alba). Food Chemistry, 138(2–3), 1734–41. | www.sciencedirect.com/science/article/pii/S0308814612016937 |
Chapter 10 | 337 | Lynch, R. et al. (2017). Sulforaphane from broccoli reduces symptoms of autism: A follow-up case series from a randomized double-blind study. Global Advances in Health and Medicine, 6, 2164957X17735826. | journals.sagepub.com/doi/abs/10.1177/2164957X17735826 |
Chapter 10 | 338 | Fahey, J. W., Zhang, Y. and Talalay, P. (1997). Broccoli sprouts: An exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proceedings of the National Academy of Sciences, 94(19), 10367–72. | www.pnas.org/content/94/19/10367 |
Chapter 10 | 339 | Guo, L., Yang, R., Wang, Z. and Gu, Z. (2015). Effect of freezing methods on sulforaphane formation in broccoli sprouts. RSC Advances, 5(41), 32290–7. | www.researchgate.net/publication/273957493_Effect_of_freezing_methods_on_sulforaphane_formation_in_broccoli_sprouts |
Chapter 10 | 340 | Goddard, A. F., James, M. W., McIntyre, A. S. and Scott, B. B. (2011). Guidelines for the management of iron deficiency anaemia. Gut, 60(10), 1309–16. | gut.bmj.com/content/60/10/1309 |
Chapter 10 | 341 | Hallberg, L., Brune, M. A. T. S. and Rossander-Hulthén, L. E. N. A. (1987). Is there a physiological role of vitamin C in iron absorption? Annals of the New York Academy of Sciences, 498, 324. | www.ncbi.nlm.nih.gov/pubmed/3304065 |
Chapter 10 | 342 | Imam, M. U., Zhang, S., Ma, J., Wang, H. and Wang, F. (2017). Antioxidants mediate both iron homeostasis and oxidative stress. Nutrients, 9(7), 671. | www.ncbi.nlm.nih.gov/pmc/articles/PMC5537786 |
Chapter 10 | 343 | Rayman, M. P. (2012). Selenium and human health. The Lancet, 379(9822), 1256–68. | www.sciencedirect.com/science/article/pii/S0140673611614529 |
Chapter 10 | 344 | Shreenath, A. P. and Dooley, J. (2019). Selenium deficiency. In StatPearls [Internet]. StatPearls Publishing, Treasure Island. | www.ncbi.nlm.nih.gov/books/NBK482260 |
Chapter 10 | 345 | Jones, G. D. et al. (2017). Selenium deficiency risk predicted to increase under future climate change. Proceedings of the National Academy of Sciences, 114(11), 2848–53. | www.pnas.org/content/114/11/2848 |
Chapter 10 | 346 | Stoffaneller, R. and Morse, N. L. (2015). A review of dietary selenium intake and selenium status in Europe and the Middle East. Nutrients, 7(3), 1494–537. | www.mdpi.com/2072-6643/7/3/1494 |
Chapter 10 | 347 | Alfthan, G. et al. (2015). Effects of nationwide addition of selenium to fertilizers on foods, and animal and human health in Finland: From deficiency to optimal selenium status of the population. Journal of Trace Elements in Medicine and Biology, 31, 142–7. | www.sciencedirect.com/science/article/pii/S0946672X14000662 |
Chapter 10 | 348 | Ventura, M., Melo, M. and Carrilho, F. (2017). Selenium and thyroid disease: From pathophysiology to treatment. International Journal of Endocrinology, 2017. | www.hindawi.com/journals/ije/2017/1297658 |
Chapter 10 | 349 | Kuria, A., Tian, H., Li, M., Wang, Y., Aaseth, J. O., Zang, J. and Cao, Y. (2020). Selenium status in the body and cardiovascular disease: A systematic review and meta-analysis. Critical Reviews in Food Science and Nutrition, 1–10. | www.tandfonline.com/doi/full/10.1080/10408398.2020.1803200 |
Chapter 10 | 350 | Kamble, P. et al. (2009). Selenium intoxication with selenite broth resulting in acute renal failure and severe gastritis. Saudi Journal of Kidney Diseases and Transplantation, 20(1), 106–11. | pubmed.ncbi.nlm.nih.gov/19112227 |
Chapter 10 | 351 | Thomson, C. D., Chisholm, A., McLachlan, S. K. and Campbell, J. M. (2008). Brazil nuts: An effective way to improve selenium status. American Journal of Clinical Nutrition, 87(2), 379–84. | academic.oup.com/ajcn/article-abstract/87/2/379/4633360 |
Chapter 10 | 352 | Fairweather-Tait, S. J., Collings, R. and Hurst, R. (2010). Selenium bioavailability: Current knowledge and future research requirements. American Journal of Clinical Nutrition, 91(5), 1484S–91S. | academic.oup.com/ajcn/article-abstract/91/5/1484S/4597437 |
Chapter 10 | 353 | Sandstead, H. H. (1994). Understanding zinc: Recent observations and interpretations. Journal of Laboratory and Clinical Medicine, 124(3), 322–7. | europepmc.org/article/med/8083574 |
Chapter 10 | 354 | Fallah, A., Mohammad-Hasani, A. and Colagar, A. H. (2018). Zinc is an essential element for male fertility: A review of Zn roles in men’s health, germination, sperm quality, and fertilization. Journal of Reproduction & Infertility, 19(2), 69. | www.ncbi.nlm.nih.gov/pmc/articles/pmc6010824 |
Chapter 10 | 355 | Roohani, N., Hurrell, R., Kelishadi, R. and Schulin, R. (2013). Zinc and its importance for human health: An integrative review. Journal of Research in Medical Sciences, 18(2), 144. | www.ncbi.nlm.nih.gov/pmc/articles/PMC3724376 |
Chapter 10 | 356 | Betsy, A., Binitha, M. P. and Sarita, S. (2013). Zinc deficiency associated with hypothyroidism: An overlooked cause of severe alopecia. International Journal of Trichology, 5(1), 40. | www.ncbi.nlm.nih.gov/pmc/articles/PMC3746228 |
Chapter 10 | 357 | Swardfager, W., Herrmann, N., Mazereeuw, G., Goldberger, K., Harimoto, T. and Lanctôt, K. L. (2013). Zinc in depression: A meta-analysis. Biological Psychiatry, 74(12), 872–8. | www.sciencedirect.com/science/article/pii/S0006322313004514 |
Chapter 10 | 358 | Ranjbar, E. et al. (2013). Effects of zinc supplementation in patients with major depression: A randomized clinical trial. Iranian Journal of Psychiatry, 8(2), 73–9. | www.ncbi.nlm.nih.gov/pmc/articles/PMC3796297 |
Chapter 10 | 359 | Solati, Z., Jazayeri, S., Tehrani-Doost, M., Mahmoodianfard, S. and Gohari, M. R. (2015). Zinc monotherapy increases serum brain-derived neurotrophic factor (BDNF) levels and decreases depressive symptoms in overweight or obese subjects: A double-blind, randomized, placebo-controlled trial. Nutritional Neuroscience, 18(4), 162–8. | www.tandfonline.com/doi/abs/10.1179/1476830513Y.0000000105 |
Chapter 10 | 360 | Sauer, A. K., Hagmeyer, S. and Grabrucker, A. M. (2016). Zinc deficiency. In Erkekoglu, P. and Kocer-Gumusel, B. Nutritional Deficiency. Intact Open Science, London, 23–46. | www.researchgate.net/profile/Andreas_Grabrucker/publication/305333901_Zinc_Deficiency/links/578904c808ae7a588ee857b4/Zinc-Deficiency.pdf |
Chapter 10 | 361 | Australian Government National Health and Medical Research Council and New Zealand Ministry of Health. (2014). Zinc. Nutrient Reference Values for Australia and New Zealand. | www.nrv.gov.au/nutrients/zinc |
Chapter 10 | 362 | Saunders, A. V., Craig, W. J. and Baines, S. K. (2013). Zinc and vegetarian diets. Medical Journal of Australia, 199(4), S17–21. | www.mja.com.au/journal/2013/199/4/zinc-and-vegetarian-diets |
Chapter 10 | 363 | Hunt, J. R., Beiseigel, J. M. and Johnson, L. K. (2008). Adaptation in human zinc absorption as influenced by dietary zinc and bioavailability. American Journal of Clinical Nutrition, 87(5), 1336–45. | academic.oup.com/ajcn/article-abstract/87/5/1336/4650794 |
Chapter 10 | 364 | Türk, M., Carlsson, N. G. and Sandberg, A. S. (1996). Reduction in the levels of phytate during wholemeal bread making; Effect of yeast and wheat phytases. Journal of Cereal Science, 23(3), 257–64. | www.sciencedirect.com/science/article/pii/S0733521096900260 |
Chapter 10 | 365 | Lonnerdal, B. (2000). Dietary factors influencing zinc absorption. Journal of Nutrition, 130(5), 1378S–83S. | academic.oup.com/jn/article-abstract/130/5/1378S/4686381 |
Chapter 10 | 366 | Hedren, E., Diaz, V. and Svanberg, U. (2002). Estimation of carotenoid accessibility from carrots determined by an in vitro digestion method. European Journal of Clinical Nutrition, 56(5), 425–30. | www.nature.com/articles/1601329 |
Chapter 10 | 367 | Cornell University. Cooking tomatoes boosts disease-fighting power. ScienceDaily. 23 April 2002. | www.sciencedaily.com/releases/2002/04/020422073341.htm |
Chapter 10 | 368 | Carmody, R. N. et al. (2019). Cooking shapes the structure and function of the gut microbiome. Nature Microbiology, 4(12), 2052–63. | www.nature.com/articles/s41564-019-0569-4 |
Chapter 10 | 369 | Yuan, G. F., Sun, B., Yuan, J. and Wang, Q. M. (2009). Effects of different cooking methods on health-promoting compounds of broccoli. Journal of Zhejiang University. Science B, 10(8), 580–8. | link.springer.com/article/10.1631/jzus.B0920051 |
Chapter 10 | 370 | Xu, F., Zheng, Y., Yang, Z., Cao, S., Shao, X. and Wang, H. (2014). Domestic cooking methods affect the nutritional quality of red cabbage. Food Chemistry, 161, 162–7. | www.sciencedirect.com/science/article/pii/S0308814614005706 |
Chapter 10 | 371 | Zeng, C. (2013). Effects of different cooking methods on the vitamin C content of selected vegetables. Nutrition & Food Science, 43(5), 438–43. | www.emerald.com/insight/content/doi/10.1108/NFS-11-2012-0123/full/html |
Chapter 10 | 372 | Song, K. and Milner, J. A. (2001). The influence of heating on the anticancer properties of garlic. Journal of Nutrition, 131(3), 1054S–7S. | academic.oup.com/jn/article-abstract/131/3/1054S/4687116 |
Chapter 10 | 373 | Cavagnaro, P. F., Camargo, A., Galmarini, C. R. and Simon, P. W. (2007). Effect of cooking on garlic (Allium sativum L.) antiplatelet activity and thiosulfinates content. Journal of Agricultural and Food Chemistry, 55(4), 1280–8. | pubs.acs.org/doi/abs/10.1021/jf062587s |
Chapter 10 | 374 | Chiplonkar, S. A. and Agte, V. V. (2006). Predicting bioavailable zinc from lower phytate forms, folic acid and their interactions with zinc in vegetarian meals. Journal of the American College of Nutrition, 25(1), 26–33. | www.tandfonline.com/doi/abs/10.1080/07315724.2006.10719511 |
Chapter 10 | 375 | Cook, N. R. et al. (2007). Long term effects of dietary sodium reduction on cardiovascular disease outcomes: Observational follow-up of the trials of hypertension prevention (TOHP). BMJ, 334(7599), 885. | www.bmj.com/content/334/7599/885 |
Chapter 10 | 376 | Cook, N. R., Appel, L. J. and Whelton, P. K. (2016). Sodium intake and all-cause mortality over 20 years in the trials of hypertension prevention. Journal of the American College of Cardiology, 68(15), 1609–17. | www.onlinejacc.org/content/68/15/1609 |
Chapter 10 | 377 | Fayet-Moore, F. et al. (2020). An analysis of the mineral composition of pink salt available in Australia. Foods, 9(10), 1490. | www.mdpi.com/2304-8158/9/10/1490 |
Chapter 10 | 378 | American Heart Association. (2016). Shaking the salt habit to lower high blood pressure. American Heart Association. | www.heart.org/en/health-topics/high-blood-pressure/changes-you-can-make-to-manage-high-blood-pressure/shaking-the-salt-habit-to-lower-high-blood-pressure |
Chapter 10 | 379 | The George Institute for Global Health. (2019). Salt levels in meat alternatives in Australia (2010–2019). Report prepared for the Vichealth Salt Partnership, by Emalie Rosewarne and Clare Farrand, World Health Organization Collaborating Centre on Population Salt Reduction, The George Institute for Global Health, Sydney. | www.georgeinstitute.org/sites/default/files/meat_alternatives_key_findings_report.pdf |
Chapter 10 | 380 | Vitale, K. and Getzin, A. (2019). Nutrition and supplement update for the endurance athlete: Review and recommendations. Nutrients, 11(6), 1289. | www.mdpi.com/2072-6643/11/6/1289 |
Chapter 10 | 381 | Burnett, A. J., Livingstone, K. M., Woods, J. L. and McNaughton, S. A. (2017). Dietary supplement use among Australian adults: Findings from the 2011–2012 National Nutrition and Physical Activity Survey. Nutrients, 9(11), 1248. | www.mdpi.com/2072-6643/9/11/1248 |
Chapter 10 | 382 | National Institutes of Health Office of Dietary Supplements. (2021). Vitamin B12: Fact sheet for consumers. NIH. | ods.od.nih.gov/factsheets/VitaminB12-Consumer |
Chapter 10 | 383 | Australian Institute of Health and Welfare. (2018). Australia’s Health 2018. Australia’s Health series no. 16. AUS 221. AIHW, Australian Government, Canberra. | www.aihw.gov.au/getmedia/7c42913d-295f-4bc9-9c24-4e44eff4a04a/aihw-aus-221.pdf |
Chapter 10 | 384 | Kantor, E. D., Rehm, C. D., Du, M., White, E. and Giovannucci, E. L. (2016). Trends in dietary supplement use among US adults from 1999–2012. JAMA, 316(14), 1464–74. | jamanetwork.com/journals/jama/article-abstract/2565748 |
Chapter 10 | 385 | Kreider, R. B. et al. (2017). International Society of Sports Nutrition position stand: Safety and efficacy of creatine supplementation in exercise, sport, and medicine. Journal of the International Society of Sports Nutrition, 14(1), 1–18. | jissn.biomedcentral.com/articles/10.1186/s12970-017-0173-z |
Chapter 10 | 386 | Kaviani, M., Shaw, K. and Chilibeck, P. D. (2020). Benefits of creatine supplementation for vegetarians compared to omnivorous athletes: A systematic review. International Journal of Environmental Research and Public Health, 17(9), 3041. | www.mdpi.com/1660-4601/17/9/3041 |
Chapter 10 | 387 | Watanabe, A., Kato, N. and Kato, T. (2002). Effects of creatine on mental fatigue and cerebral hemoglobin oxygenation. Neuroscience Research, 42(4), 279–85. | www.sciencedirect.com/science/article/pii/S016801020200007X |
Chapter 10 | 388 | Benton, D. and Donohoe, R. (2011). The influence of creatine supplementation on the cognitive functioning of vegetarians and omnivores. British Journal of Nutrition, 105(7), 1100–5. | www.ncbi.nlm.nih.gov/pubmed/21118604 |
Chapter 10 | 389 | Rae, C., Digney, A. L., McEwan, S. R. and Bates, T. C. (2003). Oral creatine monohydrate supplementation improves brain performance: A double-blind, placebo-controlled, cross-over trial. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1529), 2147–50. | royalsocietypublishing.org/doi/abs/10.1098/rspb.2003.2492 |
Chapter 10 | 390 | Karimi, R., Fitzgerald, T. P. and Fisher, N. S. (2012). A quantitative synthesis of mercury in commercial seafood and implications for exposure in the United States. Environmental Health Perspectives, 120(11), 1512–19. | ehp.niehs.nih.gov/doi/abs/10.1289/ehp.1205122 |
Chapter 10 | 391 | Szkoda, J., Durkalec, M., Nawrocka, A. and Michalski, M. (2015). Mercury concentration in bivalve molluscs. Bulletin of the Veterinary Institute in Pulawy, 59(3), 357–60. | pubag.nal.usda.gov/catalog/4808953 |
Chapter 10 | 392 | Cox, C. Consider the oyster. Slate. 7 April 2010. | slate.com/human-interest/2010/04/it-s-ok-for-vegans-to-eat-oysters.html |
Chapter 10 | 393 | Hill, S. (2021). Eating oysters and mussels as a vegan. Plant Proof. | plantproof.com/eating-oysters-and-mussels-as-a-vegan |
Chapter 10 | 394 | Jacquet, J. Why oysters, mussels and clams could hold the key to more ethical fish farming. Guardian. 24 January 2017. | www.theguardian.com/sustainable-business/2017/jan/23/aquaculture-bivalves-oysters-factory-farming-environment |
Chapter 10 | 395 | McVeigh, K. Climate crisis and antibiotic use could ‘sink’ fish farming industry – report. Guardian. 5 June 2019. | www.theguardian.com/environment/2019/jun/05/climate-crisis-and-antibiotic-use-could-sink-fish-farming-industry-report |
Chapter 10 | 396 | Delaware Sea Grant – A joint project by the Universities of Oregon State, Cornell, Delaware, Rhode Island, Florida, and California, and the Community Seafood Initiative. Does seafood have hormones, antibiotics, or drugs? Seafood Health Facts. | www.seafoodhealthfacts.org/faq/does-seafood-have-hormones-antibiotics-or-drugs |
Chapter 10 | 397 | Leproult, R., Colecchia, E. F., L’Hermite-Balériaux, M. and Van Cauter, E. (2001). Transition from dim to bright light in the morning induces an immediate elevation of cortisol levels. Journal of Clinical Endocrinology & Metabolism, 86(1), 151–7. | academic.oup.com/jcem/article-abstract/86/1/151/2841140 |
Chapter 10 | 398 | Manoogian, E. N., Chaix, A. and Panda, S. (2019). When to eat: The importance of eating patterns in health and disease. Journal of Biological Rhythms, 34(6), 579–81. | journals.sagepub.com/doi/full/10.1177/0748730419892105 |
Chapter 10 | 399 | Gu, C. et al. (2020). Metabolic effects of late dinner in healthy volunteers: A randomized crossover clinical trial. Journal of Clinical Endocrinology & Metabolism, 105(8), 2789–802. | academic.oup.com/jcem/advance-article-abstract/doi/10.1210/clinem/dgaa354/5855227 |
Chapter 10 | 400 | Dashti, H. S., Gómez-Abellán, P., Qian, J., Esteban, A., Morales, E., Scheer, F. A. and Garaulet, M. (2021). Late eating is associated with cardiometabolic risk traits, obesogenic behaviors, and impaired weight loss. American Journal of Clinical Nutrition, 113(1), 154–61. | academic.oup.com/ajcn/article/113/1/154/5918527 |
Chapter 10 | 401 | Zitting, K. M. et al. (2018). Human resting energy expenditure varies with circadian phase. Current Biology, 28(22), 3685–90. | www.sciencedirect.com/science/article/pii/S0960982218313344 |
Chapter 10 | 402 | Richter, J., Herzog, N., Janka, S., Baumann, T., Kistenmacher, A. and Oltmanns, K. M. (2020). Twice as high diet-induced thermogenesis after breakfast vs dinner on high-calorie as well as low-calorie meals. Journal of Clinical Endocrinology & Metabolism, 105(3), e211–21. | academic.oup.com/jcem/article-abstract/105/3/e211/5740411 |
Chapter 10 | 403 | Wilkinson, M. J. et al. (2020). Ten-hour time-restricted eating reduces weight, blood pressure, and atherogenic lipids in patients with metabolic syndrome. Cell Metabolism, 31(1), 92–104. | www.sciencedirect.com/science/article/pii/S1550413119306114 |
Chapter 10 | 404 | LeCheminant, J. D., Christenson, E., Bailey, B. W. and Tucker, L. A. (2013). Restricting night-time eating reduces daily energy intake in healthy young men: A short-term cross-over study. British Journal of Nutrition, 110(11), 2108–13. | www.cambridge.org/core/journals/british-journal-of-nutrition/article/restricting-nighttime-eating-reduces-daily-energy-intake-in-healthy-young-men-a-shortterm-crossover-study/3627087601F148E8D16163468FCB3F05 |
Chapter 10 | 405 | Wilkinson, M., Manoogian, E., Zadourian, A., Lo, H., Panda, S. and Taub, P. (2019). Time-restricted eating promotes weight loss and lowers blood pressure in patients with metabolic syndrome. Journal of the American College of Cardiology, 73(9Supp1), 1843. | www.jacc.org/doi/full/10.1016/S0735-1097%2819%2932449-0 |
Chapter 10 | 406 | Gill, S. and Panda, S. (2015). A smartphone app reveals erratic diurnal eating patterns in humans that can be modulated for health benefits. Cell Metabolism, 22(5), 789–98. | www.sciencedirect.com/science/article/pii/S1550413115004623 |
Chapter 10 | 407 | Chow, L. S., Manoogian, E., Alvear, A. C., Wang, Q., Panda, S. and Mashek, D. G. (2019). 2076-P: Time restricted eating (TRE) promotes weight loss, alters body composition, and improves metabolic parameters in overweight humans. Diabetes, 68(Supplement 1). | diabetes.diabetesjournals.org/content/68/Supplement_1/2076-P |
Chapter 10 | 408 | Walker, W. H., Walton, J. C., DeVries, A. C. and Nelson, R. J. (2020). Circadian rhythm disruption and mental health. Translational Psychiatry, 10(1), 1–13. | www.nature.com/articles/s41398-020-0694-0 |
Chapter 10 | 409 | Voigt, R. M., Forsyth, C. B. and Keshavarzian, A. (2013). Circadian disruption: Potential implications in inflammatory and metabolic diseases associated with alcohol. Alcohol Research: Current Reviews, 35(1), 87–96. | www.ncbi.nlm.nih.gov/pmc/articles/PMC3860420 |
Chapter 10 | 410 | Serin, Y. and Tek, N. A. (2019). Effect of circadian rhythm on metabolic processes and the regulation of energy balance. Annals of Nutrition and Metabolism, 74(4), 322–30. | www.karger.com/Article/Abstract/500071 |
Chapter 10 | 411 | Madjd, A., Taylor, M. A., Delavari, A., Malekzadeh, R., Macdonald, I. A. and Farshchi, H. R. (2016). Beneficial effect of high energy intake at lunch rather than dinner on weight loss in healthy obese women in a weight-loss program: A randomized clinical trial. American Journal of Clinical Nutrition, 104(4), 982–9. | academic.oup.com/ajcn/article/104/4/982/4557122 |
Chapter 10 | 412 | Australian Government National Health and Medical Research Council and New Zealand Ministry of Health. (2014). Water. Nutrient Reference Values for Australia and New Zealand. | www.nrv.gov.au/nutrients/water |
Chapter 10 | 413 | Popkin, B. M., D’Anci, K. E. and Rosenberg, I. H. (2010). Water, hydration, and health. Nutrition Reviews, 68(8), 439–58. | academic.oup.com/nutritionreviews/article-abstract/68/8/439/1841926 |
Chapter 10 | 414 | Poole, R., Kennedy, O. J., Roderick, P., Fallowfield, J. A., Hayes, P. C. and Parkes, J. (2017). Coffee consumption and health: Umbrella review of meta-analyses of multiple health outcomes. BMJ, 359, j5024. | www.bmj.com/content/359/bmj.j5024 |
Chapter 10 | 415 | van Dam, R. M. and Hu, F. B. (2005). Coffee consumption and risk of type 2 diabetes: A systematic review. JAMA, 294(1), 97–104. | jamanetwork.com/journals/jama/article-abstract/201177 |
Chapter 10 | 416 | Freeman, A. M. et al. (2018). A clinician’s guide for trending cardiovascular nutrition controversies: Part II. Journal of the American College of Cardiology, 72(5), 553–68. | www.jacc.org/doi/full/10.1016/j.jacc.2018.05.030 |
Chapter 10 | 417 | Zhang, C., Qin, Y. Y., Wei, X., Yu, F. F., Zhou, Y. H. and He, J. (2015). Tea consumption and risk of cardiovascular outcomes and total mortality: A systematic review and meta-analysis of prospective observational studies. European Journal of Epidemiology, 30, 103–13. | link.springer.com/article/10.1007/s10654-014-9960-x |
Chapter 10 | 418 | Jalalyazdi, M., Ramezani, J., Izadi-Moud, A., Madani-Sani, F., Shahlaei, S. and Ghiasi, S. S. (2019). Effect of hibiscus sabdariffa on blood pressure in patients with stage 1 hypertension. Journal of Advanced Pharmaceutical Technology & Research, 10(3), 107. | www.ncbi.nlm.nih.gov/pmc/articles/PMC6621350 |
Chapter 10 | 419 | Heaney, R. P. (2002). Effects of caffeine on bone and the calcium economy. Food and Chemical Toxicology, 40(9), 1263–70. | www.sciencedirect.com/science/article/pii/S0278691502000947 |
Chapter 10 | 420 | American College of Obstetricians and Gynecologists Clinical Guidance Committee. (2010). Moderate caffeine consumption during pregnancy: Committee opinion number 462. American College of Obstetricians and Gynecologists. | www.acog.org/clinical/clinical-guidance/committee-opinion/articles/2010/08/moderate-caffeine-consumption-during-pregnancy |
Chapter 10 | 421 | van Dam, R. M., Hu, F. B. and Willett, W. C. (2020). Coffee, caffeine, and health. New England Journal of Medicine, 383(4), 369–78. | www.nejm.org/doi/full/10.1056/NEJMra1816604 |
Chapter 10 | 422 | Ordovas, J. M., Ferguson, L. R., Tai, E. S. and Mathers, J. C. (2018). Personalised nutrition and health. BMJ, 361, k2173. | www.bmj.com/content/361/bmj.k2173 |
Chapter 10 | 423 | Australian Bureau of Statistics. (2018). National Health Survey: First results. Australian Bureau of Statistics (ABS), Australian Government, Canberra. | www.abs.gov.au/statistics/health/health-conditions-and-risks/national-health-survey-first-results/2017-18 |
Chapter 10 | 424 | Westerterp, K. R. (2004). Diet induced thermogenesis. Nutrition & Metabolism, 1(1), 1–5. | nutritionandmetabolism.biomedcentral.com/articles/10.1186/1743-7075-1-5 |
Chapter 10 | 425 | Dennis, E. A., Dengo, A. L., Comber, D. L., Flack, K. D., Savla, J., Davy, K. P. and Davy, B. M. (2010). Water consumption increases weight loss during a hypocaloric diet intervention in middle‐aged and older adults. Obesity, 18(2), 300–7. | onlinelibrary.wiley.com/doi/abs/10.1038/oby.2009.235 |
Chapter 10 | 426 | Malik, V. S., Schulze, M. B. and Hu, F. B. (2006). Intake of sugar-sweetened beverages and weight gain: A systematic review. American Journal of Clinical Nutrition, 84(2), 274–88. | academic.oup.com/ajcn/article-abstract/84/2/274/4881805 |
Chapter 10 | 427 | Jääskeläinen, A., Nevanperä, N., Remes, J., Rahkonen, F., Järvelin, M. R. and Laitinen, J. (2014). Stress-related eating, obesity and associated behavioural traits in adolescents: A prospective population-based cohort study. BMC Public Health, 14(1), 321. | link.springer.com/article/10.1186/1471-2458-14-321 |
Chapter 10 | 428 | Wolfson, J. and Bleich, S. (2015). Is cooking at home associated with better diet quality or weight-loss intention? Public Health Nutrition, 18(8), 1397–406. | www.cambridge.org/core/journals/public-health-nutrition/article/is-cooking-at-home-associated-with-better-diet-quality-or-weightloss-intention/B2C8C168FFA377DD2880A217DB6AF26F |
Chapter 10 | 429 | Slater, G. J., Dieter, B. P., Marsh, D. J., Helms, E. R., Shaw, G. and Iraki, J. (2019). Is an energy surplus required to maximize skeletal muscle hypertrophy associated with resistance training. Frontiers in Nutrition, 6, 131. | www.frontiersin.org/articles/10.3389/fnut.2019.00131 |
Chapter 10 | 430 | Norton, L. E., Wilson, G. J., Layman, D. K., Moulton, C. J. and Garlick, P. J. (2012). Protein distribution affects muscle mass based on differences in postprandial muscle protein synthesis and plasma leucine in rats. Journal of the International Society of Sports Nutrition, 9(1), P23. | jissn.biomedcentral.com/articles/10.1186/1550-2783-9-S1-P23 |
Chapter 10 | 431 | Mamerow, M. M. et al. (2014). Dietary protein distribution positively influences 24-h muscle protein synthesis in healthy adults. Journal of Nutrition, 144(6), 876–80. | academic.oup.com/jn/article-abstract/144/6/876/4589937 |
Chapter 10 | 432 | Schoenfeld, B. J. and Aragon, A. A. (2018). How much protein can the body use in a single meal for muscle-building? Implications for daily protein distribution. Journal of the International Society of Sports Nutrition, 15(1), 1–6. | jissn.biomedcentral.com/articles/10.1186/s12970-018-0215-1 |
Chapter 10 | 433 | Trommelen, J., Betz, M. W. and van Loon, L. J. (2019). The muscle protein synthetic response to meal ingestion following resistance-type exercise. Sports Medicine, 49(2), 185–97. | link.springer.com/article/10.1007/s40279-019-01053-5 |
Chapter 10 | 434 | Moore, D. R. (2019). Maximizing post-exercise anabolism: The case for relative protein intakes. Frontiers in Nutrition, 6, 147. | www.frontiersin.org/articles/10.3389/fnut.2019.00147 |
Chapter 10 | 435 | Yasuda, J., Tomita, T., Arimitsu, T. and Fujita, S. (2020). Evenly distributed protein intake over 3 meals augments resistance exercise–induced muscle hypertrophy in healthy young men. Journal of Nutrition, 150(7), 1845–51. | academic.oup.com/jn/article-abstract/doi/10.1093/jn/nxaa101/5823851 |
Chapter 10 | 436 | Joy, J. M. et al. (2013). The effects of 8 weeks of whey or rice protein supplementation on body composition and exercise performance. Nutrition Journal, 12(1), 1–7. | nutritionj.biomedcentral.com/articles/10.1186/1475-2891-12-86 |
Chapter 10 | 437 | Tang, J. E., Moore, D. R., Kujbida, G. W., Tarnopolsky, M. A. and Phillips, S. M. (2009). Ingestion of whey hydrolysate, casein, or soy protein isolate: Effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. Journal of Applied Physiology, 107(3), 987–92. | journals.physiology.org/doi/full/10.1152/japplphysiol.00076.2009 |
Chapter 10 | 438 | Banaszek, A., Townsend, J. R., Bender, D., Vantrease, W. C., Marshall, A. C. and Johnson, K. D. (2019). The effects of whey vs. pea protein on physical adaptations following 8 weeks of high-intensity functional training (HIFT): A pilot study. Sports, 7(1), 12. | www.mdpi.com/2075-4663/7/1/12 |
Chapter 10 | 439 | Moon, J. M. et al. (2020). Effects of daily 24-gram doses of rice or whey protein on resistance training adaptations in trained males. Journal of the International Society of Sports Nutrition, 17(1), 1–15. | link.springer.com/article/10.1186/s12970-020-00394-1 |
Chapter 10 | 440 | Babault, N. et al. (2015). Pea proteins oral supplementation promotes muscle thickness gains during resistance training: A double-blind, randomized, placebo-controlled clinical trial vs. whey protein. Journal of the International Society of Sports Nutrition, 12(1), 1–9. | jissn.biomedcentral.com/articles/10.1186/s12970-014-0064-5 |
Chapter 10 | 441 | Messina, M., Lynch, H., Dickinson, J. M. and Reed, K. E. (2018). No difference between the effects of supplementing with soy protein versus animal protein on gains in muscle mass and strength in response to resistance exercise. International Journal of Sport Nutrition and Exercise Metabolism, 28(6), 674–85. | journals.humankinetics.com/view/journals/ijsnem/28/6/article-p674.xml |
Chapter 10 | 442 | Lynch, H. M. et al. (2020). No significant differences in muscle growth and strength development when consuming soy and whey protein supplements matched for leucine following a 12 week resistance training program in men and women: A randomized trial. International Journal of Environmental Research and Public Health, 17(11), 3871. | www.mdpi.com/1660-4601/17/11/3871 |
Chapter 10 | 443 | Gorissen, S., Crombag, J., Senden, J., Waterval, W., Bierau, J., Verdijk, L. B. and van Loon, L. (2018). Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids, 50(12), 1685–95. | www.ncbi.nlm.nih.gov/pmc/articles/PMC6245118 |
Chapter 10 | 444 | Cole, B. F. et al. (2007). Folic acid for the prevention of colorectal adenomas: A randomized clinical trial. JAMA, 297(21), 2351–9. | jamanetwork.com/journals/jama/article-abstract/207344 |
Chapter 10 | 445 | Figueiredo, J. C. et al. (2009). Folic acid and risk of prostate cancer: Results from a randomized clinical trial. Journal of the National Cancer Institute, 101(6), 432–5. | academic.oup.com/jnci/article-abstract/101/6/432/997701 |
Chapter 10 | 446 | Mullen, W., Stewart, A. J., Lean, M. E., Gardner, P., Duthie, G. G. and Crozier, A. (2002). Effect of freezing and storage on the phenolics, ellagitannins, flavonoids, and antioxidant capacity of red raspberries. Journal of Agricultural and Food Chemistry, 50(18), 5197–201. | pubs.acs.org/doi/abs/10.1021/jf020141f |
Chapter 10 | 447 | Bouzari, A., Holstege, D. and Barrett, D. M. (2015). Vitamin retention in eight fruits and vegetables: A comparison of refrigerated and frozen storage. Journal of Agricultural and Food Chemistry, 63(3), 957–62. | pubs.acs.org/doi/abs/10.1021/jf5058793 |
Chapter 10 | 448 | Crimarco, A. et al. (2020). A randomized crossover trial on the effect of plant-based compared with animal-based meat on trimethylamine-N-oxide and cardiovascular disease risk factors in generally healthy adults: Study With Appetizing Plantfood-Meat Eating Alternative Trial (SWAP-MEAT). American Journal of Clinical Nutrition, 112(5), 1188–99. | academic.oup.com/ajcn/article-abstract/112/5/1188/5890315 |
Chapter 10 | 449 | Bittman, M. (2013). Vegan Before 6: Lose weight and restore your health with the flexible diet you can really stick to. Hachette, London. | www.hachette.com.au/mark-bittman/vegan-before-6-lose-weight-and-restore-your-health-with-the-flexible-diet-you-can-really-stick-to |
Chapter 10 | 450 | Kim, B. F. et al. (2020). Country-specific dietary shifts to mitigate climate and water crises. Global Environmental Change, 62, 101926. | www.sciencedirect.com/science/article/pii/S0959378018306101 |
Chapter 10 | 451 | Ritchie, H. and Roser, M. (2020). Environmental impacts of food production. Our World in Data. | ourworldindata.org/environmental-impacts-of-food |
Chapter 10 | 452 | Parker, R. W., Blanchard, J. L., Gardner, C., Green, B. S., Hartmann, K., Tyedmers, P. H. and Watson, R. A. (2018). Fuel use and greenhouse gas emissions of world fisheries. Nature Climate Change, 8(4), 333–7. | www.nature.com/articles/s41558-018-0117-x |
The information found on theproof.com or any of its media platforms is intended for informational and educational purposes only. Any statements made on these platforms are not intended to diagnose, cure, treat or prevent any disease or illness. Please consult with your medical practitioner before making any changes to your current diet and lifestyle.